
 
ABSTRACTION LAYER  

FOR IMPLEMENTATION OF EXTENSIONS  

IN PROGRAMMABLE NETWORKS  

 
 

Hardware Abstraction Layer (HAL)  
Whitepaper 

 

1. Abstract 
This Whitepaper describes the concept of 
Hardware Adaptation Layer (HAL) for applying the 
OpenFlow protocol to the non-OpenFlow 
hardware. In this document, first, the motivation 
of designing the HAL is explained as well as the 
high level goals and supported network platforms. 
Then, the logical architecture of HAL is presented 
including the architectural and functional 
requirements. As next chapter the network 
hardware integration models are provided and the 
supported hardware platforms are classified. 
Finally, the proposed implementation of HAL is 
presented including the software interfaces for 
platform integrators such as the Abstract 
Forwarding API and the Pipeline Interface. 

2. Motivation for the 
HAL  

Software Defined Networking concept is getting 
more and more popularity as a solution for more 
efficient network management. The OpenFlow 
protocol is the most mature proof of concept of 
the SDN. The idea of separating the data and 
control elements in network devices is being 
supplied in new network equipment. Although, the 
OpenFlow is usually not supported in many specific 
network equipments e.g. the optical devices, 
hardware without possibility to be upgraded or 
without packet processing API. Enabling OpenFlow 
on all those non-OpenFlow devices with possible 

simplicity for the integrators are the main 
motivation assumptions for disseminating the HAL 
concept. 

2.1. Purpose of proposed solution 
and high level goals  

Although OpenFlow has clear specifications [ONF], 
when it comes to implementing those 
specifications on devices or platforms, each 
implementation is different because of 
heterogeneity of platforms and their architectures. 
Moreover, the official OpenFlow specification is 
designed for wired Ethernet platforms and it does 
not support other platforms such as circuit 
switched and wireless platforms. Designing a 
mechanism, targeting hardware-level forwarding 
platforms to provide a clean, simple, extensible 
and flexible interface between software and 
hardware will facilitate providing abstracted 
information of underlying hardware or platform 
for creating an abstracted elements for controlling 
software. This mechanism will expose all of 
functionality and performance of modern 
networking hardware, while maintaining the useful 
properties of embedded operating systems on the 
hardware platform but at the same time it will be 
platform agnostic. 
 
As part of SDN activities the ALIEN project aims to 
undertake the challenge of provide simple concept 
for non-OpenFlow hardware platforms integrators 
by designing and defining functions of a Hardware 
Abstraction Layer (HAL). This abstraction 
mechanism aims to hide hardware complexity as 



 

2 
 

well as technology and vendor specific features 
from OpenFlow control framework. 

2.2. Supported network platforms 

The targeted platform for HAL are: 

 Packet Switch: All devices that perform any 
form of L2 switching are fell into this group. 

 Optical: Basically all circuit switched devices 
(WDM/TDM) are categorized in optical group. 

 Network Processor (NP) / NetFPGA: Any device 
that its data plane can be programmed to 
perform any (L2-L4) packet processing. 

 Access Networks technologies (DOCSIS, 
GPON,GEPON...): Since these technologies’ data 
plane architecture is so different to the rest of 
platforms, it was decided to put it in separate 
group so that its abstraction could be done 
without compromising its functionality. 

In the ALIEN project the implementation of the 
HAL architecture will be validated on various 
network equipment such as: EZappliance with 
EZchip NP3 network processor, GEPON, NetFPGA, 
DOCSIS, ATCA with Cavium Octeon network 
processor, ADVA Layer 0 Switch, Dell/Force10 
7024 switch with ASIC and Cavium Octeon. 

3. Logical architecture 
of HAL 

Following the SDN concept and according to 
OpenFlow architecture, the data path or 
forwarding engine inside of an OpenFlow device 
must be controlled and managed by a controller 
who resides outside of the device and 
communicates to the device via a secure channel. 
The data path is represented to the controller in 
an abstracted fashion as a table or tables with 
flows holding packets information and actions 
associated to them which could be manipulated 
(programmed) by the controller software. 

3.1.  Requirements for HAL 

Optimum HAL for network devices to support 
OpenFlow protocol needs to have certain features 
so that it can support the current and future 
architecture of networking devices. The 

requirements for HAL was categorised in 
functional and architectural. 
 
The desired HAL should follow some architectural 
guideline in order to support the intended 
platforms. 

 HAL has to reside between controller and the 
device i.e. controller can get control access on 
data path only through HAL. 

 HAL components should be reusable as much 
as possible. This will lead to smaller code, 
better troubleshooting and management. 

 It should be portable, platform-independent 
and flexible to give ability to be implemented 
on various platforms. 

HAL has to have certain functionalities in order to 
provide a platform for controllers to control the 
data path: 

 It has to provide an interface to upper layers 
(applications) for handling hardware dependent 
issues 

 It has to provide rich information enough to 
support full featured network operating 
systems (controllers) 

 It has to expose interfaces for hardware 
reprogrammability. For example,  an ASIC 
packet-processing fast path could support 
programmability for deep-packet inspection 
operations. Another example could be 
NetFPGAs which users can define their own 
function on the hardware. 

 It has to provide interface for hardware 
resource management. 

 It has to provide mechanism for controlling 
shared abstracted resources such as 
forwarding-table in virtualized environment 

3.2. Proposed HAL architecture 

Following the functional and architectural 
requirements for desired HAL a unified 
architecture is proposed. Hardware platform 
categorization helps to build organized and 
modular components which then  yields to create 
a flexible and extensible HAL. In the following, HAL 
components and  their functionalities are 
described. 
  
The proposed HAL consists of two separate layers: 
upper Hardware Interface Layer (HIL) and lower 
Hardware Presentation Layer (HPL). 



 

3 
 

 

 
Figure 1 - HAL architecture 

HIL: Components in the HIL altogether provide an 
implementation of common device control and 
device management protocols i.e. OpenFlow, etc. 
The HIL components are independent of 
underlying hardware platform. 
 
OpenFlow endpoint: is a protocol endpoint 
responsible for maintaining connection with a 
controller.  
Virtualization:  This component is proposed as a 
method to provide virtualization capabilities to 
HAL-compatible devices. It has three different 
functionalities: (i) communicating with the 
Network Management System (NMS) of the 
Infrastructure Provider (by considering the NMS 
the responsible for properly configuring the virtual 
network instances), (ii) communicating with 
multiple OF controllers through the OpenFlow 
protocol and (iii) slicing the flowspace. The Virtual 
Agent (VA) slices the overall flowspace among 
many OF Controllers based on the configuration 
received from the NMS. On the other hand VA 
ensures setting-up control channels with each 
connected OF controller by creating one virtual 
switch per controller. Virtual switches of the same 
VA may use different versions of the OpenFlow 
protocol, depending on the capabilities of the 
controller assigned to their slice.  

 
Figure 2 - Virtualization architecture 

Bare Metal Management:  Although the ultimate 
goal of creating HAL is to provide an interface for 
controlling hardware, each hardware platform has 
different protocol for device management and 
configuration. The bare metal management 
component is responsible for hardware 
initialization and management. In case of 
configuration changes in hardware platform or 
introducing new user-defined functionality into the 
platform, this component will provide tools and 
interfaces for such events. 
 
HPL: The Hardware Presentation Layer (HPL) 
includes few components which have distinct 
functionality. The northbound of HPL provides an 
API for upper layer to create extended OpenFlow 
table. In the following, HPL components and their 
role and functionality are explained. 
 
Device Information Model: is a model of 
configured OF switch that represents switch’s state 
which probably is platform independent. It is not a 
representation of a specific hardware. Pure data 
model without processing. 
Translator: is part of device driver. it is responsible 
for translating all entries and actions from 
OpenFlow switch model (DIM) into platform 
specific commands and configurations. This 
module is not obligatory, e.g. for devices that 
supports OpenFlow data model. 
Orchestrator:  is part of driver components and 
responsible for configuring the entire subnetwork, 
i.e. multiple components, to simulate the behavior 
of OF switch modeled by DIM. As an example, 
GEPON needs configuration for both optical and 
electrical parts for appropriate functioning. 



 

4 
 

Device driver: is a piece of software that performs 
data processing using hardware 
device/accelerators. In case of closed devices, it 
only configures a device to obtain the same 
behavior like modeled by DMI OF switch (a kind of 
translation). It is a platform dependent component 
of the HAL. 

4. Network hardware 
integration models  

Various types of network hardware give different 
possibilities for HAL integration with devices. 
ALIEN HAL  supports three main hardware 
integration models for devices with different  
requirements, constraints and hardware 
capabilities. 

4.1. Built-in Model 

In the Built-in model, the overall HAL 
implementation runs inside the network device. 
The HAL acts as the only exposed device API. This 
integration model is suitable for fully 
programmable devices with available SDK and for 
device vendors. The only limitation is that a 
network device must have enough general 
purpose processing power to run HAL. Built-in 
model offers the best level of integration thus 
should be used for each network device which 
offers enough capabilities. 

4.2. Proxy Model 

In Proxy model the HAL implementation runs (at 
least partially) on a separate machine which is an 
integral part of a node. The network device itself is 
configured by HAL implementation using CLI, 
SNMP or other ways provided by a device vendor. 
For better performance entire data processing 
should be done using data plane parts of a 
network device, not in a proxy machine . This 
integration model is suitable for closed platforms 
or platforms with not enough resources for Built-in 
HAL. 

4.3. Orchestrator Model 

Orchestrator model is an extension of the Proxy. 
HAL implementation runs on separate machine 

and exposes a part of a network as a single device. 
In this case the HAL implementation must 
orchestrate a group of devices to behave as a 
single network element. This integration model is 
suitable for platforms that are constituted of 
tightly coupled elements like DOCSIS (CMTS and 
Cable Modems) and GEPON (OLT and ONU). 

5. HAL implementation 
The modular architecture of xDPD [XDP] that could 
use ROFL [ROF] pipeline library for its datapath 
implementation and freedom that ROFL library 
provides for implementation OpenFlow protocol 
on various platform regardless of their underlying 
hardware and software, leads to conclusion that 
the combination of xDPD and ROFL could build 
ALIENs HAL architecture. In the following, it will be 
explained that how the building blocks of xDPD 
and ROFL could be used in the ALIEN project. 
 

 
Figure 3 - Sample HAL implementation 

5.1. Software interfaces available 
for platform integrators 

Considering the architecture of ROFL , since the 
library is platform agnostic, it could be used on any 
platform for different purposes. In a basic 
conceptual view, a developer could implement an 
OpenFlow forwarding module by calling ROFL 
library. Also, ROFL provides an Abstracted 
Forwarding API (AFA) for controlling and 
management of the logical datapath. Part of AFA 
covers OpenFlow API but it also supports 
management tasks API. The library provides: 
 



 

5 
 

 basic support for OpenFlow protocol and maps 
protocol wire representation into a set of C++ 
classes. The library tries to hide the details of 
protocol and provide more understandable API 
for developing. The current version supports 
OpenFlow 1.2 but it aims to be a multi-version 
library. 

 an abstraction to build an OpenFlow endpoint 
for controllers. 

 capabilities to create data path elements which 
could be OpenFlow. The pipeline could be 
implemented on various platforms e.g., ASIC, 
FPGA, GNU/Linux, etc. 

5.2. CMM module 

Control and Management Module  is in charge of 
managing and controlling of physical and logical 
devices as well as keeping abstracted version of 
logical switch and its associated OpenFlow end-
point. The CMM is hardware agnostic and it is 
common for all Forwarding Modules (FM). 
The CMM communicates with FM using Abstracted 
Forwarding API (AFA). CMM will be platform 
independent but also it gives the ability for FM to 
do tasks internally without communicating with 
CMM. 

5.3. AFA interface 

Abstract Forwarding API is binding, the platform 
specific, forwarding module with control and 
management module, which is keeping the 
abstracted switching information. AFA interface 
with device specific implementation provide below 
features: 
 

 Management actions: that is creating and 
destructing logical switches. It binds the logical 
switch instance and ports or network 
interfaces. 

 I/O subsystem: this component is in charge of 
port (network interface) discovery, inventory, 
configuration and management. It also 
monitors the traffic of the interfaces to capture 
the packets for sending them for processing, 
that means OpenFlow processing, and 
afterward execute the action based on the 
policy. 

 Packet processing: this component is in charge 
of processing a packet as defined in the 
OpenFlow specification.  

 Background tasks: this component is in charge 
of managing OpenFlow pipeline, buffer or flow 
entry expiration. 

 Event generation: this component generates 
events for management and control entities 
such as port status changes, OpenFlow packet-
in and other OpenFlow messages and errors. 

5.4. Pipeline interface 

As it was mentioned FM employs ROFL pipeline 
library for implementing the OpenFlow pipeline. 
The ROFL pipeline library supports logical switch 
concept. It also supports for multi version of 
OpenFlow which is convenient for developers to 
implement different version of OpenFlow protocol 
based on their device capabilities. It is worth to 
mention that ROFL pipeline library is not a fully 
ready to use OpenFlow data path with support of 
platforms subsystems such as I/O. Although the 
subsystems are part of FM, they are platform 
specific components which are different on each 
platform. The I/O subsystems could be seen as 
device or interface drivers which have different 
architecture and API on every platform and 
systems. 

6. Conclusions 
Hardware abstraction concept is well known from 
operating systems where HAL hide hardware 
complexity from the rest of the system. In the SDN 
networks with split data and control plane, 
problem of abstracting different network 
hardware platforms is growing again. ALIEN 
project takes the problem of enabling OpenFlow 
on “alien” hardware without native support of this 
protocol. Providing an abstraction layer for alien 
hardware platforms is the key towards network 
programmability.  
 
Presented in chapter 3 general HAL architecture 
provides modular and flexible representation of 
different networking equipment. HAL architecture 
allows the data path of the network devices to be 
presented in an abstracted fashion as pipeline 
(flow tables with OF actions) to the OF controllers. 
Based on dual-layer HAL concept initial HAL 
implementation proceeds. xDPD and ROFL 
presented in chapter 5 of this Whitepaper are key 



 

6 
 

software libraries that could be reused for any 
hardware integrators.  
 
The building blocks of xDPD framework could be 
mapped to the HAL architecture. xDPD and ROFL 
support standard OpenFlow specification 
(currently v1.2)  for packet switching devices. On 
the contrary, in ALIEN project, circuit switching 
devices is one of the main targeted platforms that 
HAL needs to support. With that regard, xDPD and 
ROFL will be extended to support circuit switches 
according to OpenFlow circuit addendum v0.3. 
AFA and ROFL pipeline could represent a hardware 
abstraction layer for creating a platform agnostic 
OpenFlow datapath. While ROFL pipeline provides 
necessary ingredients for implementing an 
OpenFlow pipeline inside FM, AFA is in charge of 
acting as a platform agnostic proxy between the 
data path and the controller. 

 
At the moment, xDPD forwarding module has been 
implemented on few platforms such as OCTEON, 
Broadcom and GNU/Linux which its 
implementation is available for public. 

7. References 
[ROF]  Rofl repository and wiki, 

https://www.codebasin.net/redmine/proj

ects/rofl-core/wiki 

[XDP]  xDPD repository and wiki, 

https://www.codebasin.net/redmine/proj

ects/xdpd/wiki 

[ONF]  OpenFlow Documentation, 

https://www.opennetworking.org/sdn-

resources/onf-specifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             www.fp7-alien.eu 
 

 

 

 

Grant Agr. No. 317880 


