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Abstract 

This report provides the state of the art concerning technologies and important aspects related to hardware abstraction 
models. The ALIEN project aims at delivering innovative network abstraction layer to connect non-OpenFlow capable 
equipment to OpenFlow environment, therefore all issues relevant to hardware abstraction mechanism should be 
considered. The report starts with short description of the main ideas of Software Defined Networking (SDN), where the 
OpenFlow protocol is used. This is the “hot topic” regarding modern and future communication networks. Next, issues 
related to hardware abstraction layer and the most important network and protocol description languages related to the 
goal of the ALIEN project are presented. To hide the complexity of underlying hardware it is possible to use intermediate 
representation languages and platforms described in this deliverable. The issues related to network virtualization as well 
as selected aspects of security in SDN are also discussed. To show the practical implementation of the OpenFlow 
environment the first OpenFlow based experimental facility at Europe is depicted in the report. The network was created 
within OFELIA collaborative project and allows researchers not only to experiment by using the network but to control the 
network itself. 
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Executive Summary 

This report presents the review of state of the art  for different technologies and important aspects related to hardware 

abstraction models, which are relevant to achieve the main goal of the ALIEN project. The ALIEN project will deliver an 

innovative hardware abstraction layer which allows connecting non-OpenFlow equipment to OpenFlow networks. The use 

of any specific network equipment with centralized control software is not an easy and trivial problem. Therefore, the 

abstraction mechanism is targeting the control and management convergence and interoperability of heterogeneous 

network elements used for OpenFlow networking. The following equipment is considered in ALIEN: NetFPGA cards, EZChip 

NP-3 network processors (in EZappliance platform), Cavium OCTEON Plus AMC network processor module in an ATCA 

systems and DELL switch, Optical switches, GEPON OLT and ONU units, DOCSIS hardware. All this hardware is not yet 

OpenFlow capable. For that reason ALIEN wants to hide the specific and very diverse hardware from the central control. 

The central control should be able to contact and control any kind of hardware. This will be impossible without an 

intermediate layer which resides between the hardware and the control software.  

In Section 1 (Software Defined Networking (SDN)) a short introduction to SDN technology is provided. Basic ideas of SDN 

networking are explained. Next, the OpenFlow switch, as the most important component of the SDN network, is presented. 

An alternative to OpenFlow, namely ForCES (Forwarding and Control Element Separation) is also characterized in this 

section. 

In Section 2 (Hardware Abstraction Layer (HAL)) the need for hardware abstraction layer is discussed. The abstraction 

layer is presented to address needs to cope with the heterogeneity of the existing hardware architectures and associated 

APIs while not limiting control plane designers to write high performance control plane applications due to a high level and 

inflexible data path model. The analysis is focused on the implementation of data path in the OpenFlow-based 

environment. 

Section 3 (Network and Protocol Description Languages) is devoted to the most relevant network and protocol description 

languages related to the work defined in the ALIEN project. All these languages are summarized and compared. 

Section 4 (Intermediate Representation Languages) presents languages which are called “intermediate representation 

languages”. The term comes from computer science, where it means a language or data structure used during internal 

steps of computer program compilation. The intermediate representation allows for computer program analysis, 

optimization and transformations to another shape (e.g.: machine code).  

Section 5 (Network Virtualization) deals with different aspects of network virtualisation. A survey of different approaches 

to virtualization in selected projects as well as a short description of tools enabling virtualization is provided.  
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In Section 6 (OFELIA) the presentation of the OFELIA collaborative project and an experimental facility created within the 

project is included. A brief summary of how ALIEN may be integrated with OFELIA facilities is provided. 

Section 7 (Security Aspect) discusses the state of the art in security as it applies to the ALIEN project. In specific it covers 

security aspects related to Software Defined Networking and intermediate representation languages.  

This report will be used in Task T2.2 to design both a novel hardware description language and a functional abstraction 

mechanism for uniform representation of any type of alien hardware and their functionalities.  

This deliverable is public and may be followed by all people interested in hardware abstraction issues as well as in SDN 

concept and OpenFlow environment. 
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1 Software Defined Networking (SDN) 

Software Defined Networking (SDN) were created by researchers because of their frustration with the actual state of 

networks. Many computer and network scientists wanted to test their new networking ideas on real life networks. 

Unfortunately, it was impossible. Typical university networks were not enough – insufficient bandwidth, expensive 

hardware (switches and routers) made it impossible to test new ideas on a large enough scale. In turn, the switches and 

routers at the core of the Internet are locked down – their software constitutes intellectual property of companies such as 

Cisco and Hewlett-Packard. Therefore, in some cases it was impossible to program networks even in case when it was 

allowed to. 

Researchers response to that situation was an OpenFlow which opens up the Internet to researchers [1], [2]. OpenFlow is 

an open standard which allows centralized way of programming flow tables in heterogeneous switches and routers [3], 

[4]. Such tables include flow entries with actions to determine instructions for routing and packet processing e.g. actions  

decide how packets should be modified and which packet should be send through which port. This idea allows to manage 

flow tables (adding, removing or editing table entries to switches or routers) via a central controller. Strong point of this 

solution is that researchers can experiment with new kind of flows which is not interfering with existing ones. It makes also 

easiest to test a new kind of routing and switching protocols. 

Of course, OpenFlow is not the only one method supporting the SDN concept. Cisco introduced its own SDN idea called 

Cisco ONE [5], [6]. This solution, unlike OpenFlow, allows to program layers in the network both above and below the data 

and control plane/layer [1]. Another solution for SDN – as an alternative to OpenFlow and Cisco ONE – is ForCES introduced 

by IETF [7], [8], [9], [10], [11], [12], [13], [14], [15]. More information about OpenFlow and ForCES can be found in sections 

1.3 and 1.4, respectively. 

The current networks (in many cases the core networks) are inability to scale and extent because of greater requirements 

from day to day. Device vendors offers however, their solutions which are closed and have their own policies which both 

makes unable to extend functionality of such a network devices. If some device (switch or router) suddenly brakes down 

network administrators have to replace it by a new one and, what’s more important, they have also to reconfigure other 

devices to bring previous network functionality. It takes many hours, days or sometimes even weeks. Nowadays network 

reached almost critical level from the society point of view that’s why many network operators and administrators plan to 

modify their network infrastructure using innovative technology. 
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1.1 Overall Information 

Software Defined Networking (SDN) is an idea of network which allows network administrators or operators to flexibly 

manage network devices like routers or switches using software running on special dedicated to this purpose external 

servers. The main idea of this solution is to separate the control plane/layer from the packet forwarding plane/layer [2], 

[16]. The SDN architecture can be seen in Figure 1.1. The control plane is realized as a “network operating system” (more 

simply “network OS”) which manages the entire current network state just from one central point in such a network. To 

make possible to realize network-state abstractions and forwarding, few SDNs logically centralized control has been 

proposed. Some OpenFlow controllers are: 

 NOX – the first OpenFlow controller [17], [18], 

 POX – high-level SDN API including a queriable topology graph and support for virtualization [19], 

 Beacon – Java-based controller that supports both event-based and threaded operation [20], [21], 

 FloodLight – Java-based OpenFlow controller [22], 

 Trema – full-stack framework for developing OpenFlow controllers in Ruby and C [23], 

 Ryu – open-source Network Operating System (NOS) that supports OpenFlow [24], 

 BigSwitch [25], [26]. 

The network OS possessed all control plane functions [27]. In addition it can interact with many network devices (switches, 

routers, virtual switches) and presents a new abstract view of the network state. To configure flow tables, forwarding rules, 

etc., a network OS uses forwarding plane abstraction. Network-function oriented applications, such a VLAN provisioning 

and load-balancing, can use these abstractions to achieve the desired network behaviour without knowledge of detailed 

physical configuration. This is a huge advantage of using SDN with the current network. 

Normally, the network OS can control and oversee a whole network. In addition it can manage: 

 routing protocols, 

 access control, 

 network virtualization, 

 energy management, 

 new prototype features. 

The strongest argument to use SDN is that such a network can be extended by a new features added in software. In 

addition, network operators and administrators can programmatically configure this simplified network abstraction rather 

than having to hand-code tens of thousands of lines of configuration scattered among thousands of devices. In other words, 
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an SDN controller’s centralized intelligence allows configuration of every device in real-time and extension of network 

services for a new application in a matter of days or even hours rather months or weeks as is needed today. 

 

Figure 1.1: The SDN architecture [28] 

1.2 The Future of the Network 

SDN and OpenFlow or ForCES-based SDN technologies enable IT administrators to address the high-bandwidth, dynamic 

nature of today’s applications, and adapt the network to ever-changing business needs. More importantly, this solution 

allows significant reduction to operational and management complexity. 

The following benefits of SDN architecture can be distinguished [28]: 

 Centralized control of multi-vendor environments – SDN control software can manage and configure any 

OpenFlow-enabled network device (switches, routers, virtual switches) from any vendor. Rather than manage 

small groups of devices (switches, routers, virtual switches) from individual vendors, IT administrators can use 

SDN-based tools and management ideas to quickly deploy, configure, and update devices across the entire 

network. 

 Reduced complexity through automation – SDN offers a flexible network automation and management 

framework. It will solve a problem with manual management tasks by providing proper tools. These tools will 
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reduce operator overhead, decrease network instability introduced by operator error and support emerging IT-

as-a-Service and self-service provisioning models. In addition, cloud-based applications can be managed through 

intelligent orchestration and provisioning systems, further reducing operational overhead while increasing 

business agility. 

 Higher rate of innovation – SDN allows faster business innovation. IT network operators or administrators can 

program and reprogram the whole network in real time to meet user requirements and business needs. By 

virtualizing the network infrastructure and abstracting it from individual network services SDN and OpenFlow, 

ForCES, or Cisco ONE give IT (in future maybe even users) the ability to tailor the behaviour of the network and 

introduce new services and network capabilities in a matter of hours. 

 Increased network reliability and security – IT administrators or network operators can define high-level 

configuration and policy statements. Next, they are translated down to the infrastructure via OpenFlow (it could 

be done also via ForCES or via Cisco ONE). This solution eliminates the need to individually (re)configure network 

devices each time an end point, service, application is added or moved. This is done also if a policy changes. 

 More granular network control – OpenFlow’s flow-based control model application of policies at a very granular 

level, including the session, user, device, and application levels, in a highly abstracted, automated fashion. Such 

control enables cloud operators to support multiple tenantsi while maintaining traffic, traffic isolation, security, 

and elastic resource management when customers share the same infrastructure. 

 Better user experience – By centralizing network control and collecting state information, in one point, making it 

available to high-level application an SDN can better adapt to dynamic business needs.  

1.3 OpenFlow 

1.3.1 Overall Information 

OpenFlow is an open standard supporting communications interface defined between the control and forwarding planes 

of an SDN architecture. The location of OpenFlow in SDN architecture is shown in Figure 1.1. The OpenFlow ecosystem 

consists of routers, switches, virtual switches, and access points. The main idea of OpenFlow is to give access to and 

facilitate manipulation of the forwarding plane of network devices. It provides an open interface to control how data 

packets are forwarded through the network, and a set of management abstractions used to control topology changes and 

packet filtering. The behavior of network devices may be modified through a well-defined “forwarding instruction set”. In 

this case network control may be moved out of the networking nodes to logically centralized control software. The 

OpenFlow protocol specifies a set of instructions that can be used by an external application to program the forwarding 

plane of network devices. 

Currently, OpenFlow is implemented by major vendors in commercial switches, routers and wireless access points to allow 

researchers to run experimental routing protocols for example in campus networks without needing to reconfigure the 

internal workings of network devices. Now users can control how traffic flows through a network defining flows and 

determining what path those flows take through a network, regardless of the underlying hardware. The OpenFlow 
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standard may be used for applications such as virtual machine mobility, high-security networks and next generation IP 

based mobile networks [29].  

OpenFlow consists of three parts (see Figure 1.2) [3]: 

 Flow Tables installed on switches. The switch is informed how to process the flow by an action associated with 

each flow entry. 

 A Controller, which uses the OpenFlow protocol to communicate with switches to impose policies on flows. The 

OpenFlow protocol provides an open and standard way for the controller to communicate with switches and 

allows entries in the flow table to be defined externally. Flows are transmitted through the network on paths 

predefined using the controller and enforced by switches. 

 A Secure Channel that connects the remote controller (remote control process) to switches and allows secure 

communication between them. The SSL protocol may be used to securely send commands and packets from the 

controller to switches using the OpenFlow protocol. 

Secure 

Channel

Flow

Table

OpenFlow 
Protocol

SSL

OpenFlow Switch

PC

Controller

 

Figure 1.2: The architecture of an OpenFlow switch [28] 

The OpenFlow architecture separates data path and control path functions. The data path functions are still implemented 

on the switch, while routing decisions are moved to the controller, which is a standard server. This solution is different 

from a classical router or switch, where a data and control planes occur in the same device. Now, the controller 

communicates via the OpenFlow protocol with switches using such messages as packet-received, send-packet-out, modify-

forwarding-table, and get-stats. The data plane is based on the flow table, where each entry contains a set of packet fields 

to match, and an action e.g. send-out-port, modify-field, drop. If there is no matching flow entry for a received packet the 

OpenFlow switch sends this packet to the controller, which decides how to handle the packet. The packet may be dropped 

or a flow entry may be added to the flow table to inform the switch how to forward similar packets in the future. 
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1.3.2 OpenFlow Switch 

The main components of an OpenFlow switch are shown in Figure 1.3 [30]. It consists of one or more flow tables and an 

OpenFlow channel to an external controller. The flow tables are used to manage flows and perform packet lookups, and 

forwarding. The OpenFlow channel is used by the controller to manage the switch via the OpenFlow protocol. Using this 

communication channel the controller can add, update, and delete flow entries in flow tables. Each flow table contains a 

set of flow entries with match fields, counters, and a set of instructions to apply to matching packets. Matching starts at 

the first flow table and continues to additional flow tables until a matching entry is found. In the case of matching, the 

instructions associated with the matching entry are executed. If no match is found in the flow table the packet may be 

forwarded to the controller over the OpenFlow channel, may be dropped or may continue to the next flow table. Actions 

performed on packets and pipeline processing are defined by a set of instructions associated with each flow entry. Packet 

forwarding, packet modification and group table processing are described by actions. Pipeline processing instructions 

define how subsequent tables process packets and what kind of information, in the form of metadata, is sent between 

tables. If a next table is not specified by the instruction set associated with a matching flow entry the table pipeline 

processing stops and the actions in the pre-defined action set of the packet are executed.  

Packets may be forwarded to a physical or logical port. The logical port may be defined by the switch or by the OpenFlow 

switch specification. Ports defined by the OpenFlow switch specification are called reserved ports. These ports may specify 

generic forwarding actions such as: sending to the controller, flooding, or forwarding using non-OpenFlow methods. The 

switch-defined logical ports may specify link aggregation groups, tunnels or loopback interfaces.  

Additional processing is specified by a group table. The group table consists of group entries and represents sets of actions 

for flooding, as well as more complex forwarding semantics (e.g. multipath, fast reroute, and link aggregation). Each group 

entry contains a list of actions buckets with specific semantics dependent on group type. The actions in one or more action 

buckets are applied to packets sent to the group. 

The detailed information about each component of the OpenFlow switch as well as the OpenFlow protocol may be found 

in [30]. 

OpenFlow 
Protocol

OpenFlow Switch

Controller

Flow

Table

Flow

Table

Group

Table

OpenFlow

Channel

...
Pipeline

 

Figure 1.3: Main components of the OpenFlow switch [30] 
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1.3.2.1 OpenFlow Ports 

OpenFlow ports are the logical network interfaces made by an OpenFlow switch for OpenFlow processing. Using these 

ports OpenFlow switches connect logically to each other. The number of OpenFlow ports may not be identical to the 

number of network interfaces provided by the switch hardware. Some physical network interfaces may be disabled for 

OpenFlow, and some additional OpenFlow ports may be defined by the switch. OpenFlow packets arrive to an ingress port, 

next they are processed by the OpenFlow pipeline, and finally they may be forwarded to an output port. An OpenFlow 

switch must support three types of OpenFlow ports: physical ports, logical ports and reserved ports. 

1.3.2.2 OpenFlow Tables 

OpenFlow switches may be classified into two types: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-only switches 

support only OpenFlow operations, and all packets are processed by the OpenFlow pipeline. OpenFlow-hybrid switches 

support both OpenFlow operations and normal Ethernet (or any Layer 2 techniques) operations. These switches must 

classify traffic and route it to either the OpenFlow pipeline or the normal pipeline. In this kind of switch packets may go 

from the OpenFlow pipeline to the normal pipeline through reserved ports. The main components of the OpenFlow 

pipeline are shown in Figure 1.4. 

Table 0 Table 1 Table n

Packet +
ingress port +

metadata

Action
Set

...
Action

Set

Packet
Execute

Action

Set

Packet 
In

Packet 
Out

OpenFlow Switch

Ingress
port

Action
Set = {}

 

Figure 1.4: Packet flow through the processing pipeline [30] 

The OpenFlow pipeline processing defines interactions between packets and flow tables containing multiple flow entries. 

One or more flow tables may be implemented in the OpenFlow switch. The pipeline processing is greatly simplified when 

only a single flow table is used. In the case of multiple flow tables they are sequentially numbered, starting at 0. During 

pipeline processing the OpenFlow packet is first matched against flow entries of flow table 0. Depending on the outcome 

of the match in the first table, other flow tables may be used. If the flow entry is found, the instruction set included in that 

flow entry is executed. The packet may be directed to another flow table, where the same process is repeated again. If the 

packet is not directed to another flow entry, pipeline processing stops at this table. Next, the packet is processed according 

to the associated action set and forwarded. Unmatched packets are: drooped, passed to another table or to the controller 

over the control channel.  

Each flow table contains flow entries. Each flow table entry consists of the following fields: Match Fields, Priority, Counters, 

Instructions, Timeouts, and Cookie: 

 Match Fields – to match against packets. These consist of the ingress port and packet headers, and optionally 

metadata specified by a previous table. 
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 Priority – matching precedence of the flow entry. 

 Counters – are updated when packets are matched. 

 Instructions – to modify the action set or pipeline processing. 

 Timeouts – maximum amount of time or idle time before flow is expired by the switch. 

 Cookie – opaque data value chosen by the controller. May be used by the controller to filter flow statistics, flow 

modification and flow deletion.  

A flow table entry is identified by its match fields and priority: the match fields and priority taken together identify a unique 

flow entry in the flow table. The flow entry that wildcards all fields (all fields omitted) and has priority equal to 0 is called 

the table-miss flow entry.  

Flow entries may be removed from flow tables in two ways: at the request of the controller or by the switch flow expiry 

mechanism. This mechanism is based on the two parameters: idle_timeout and hard_timeout. These parameters are 

associated with each flow entry. If the hard_timeout_field is non-zero, the entry’s arrival time must be noted by the switch 

and the flow entry has to be removed after the given number of seconds. If the idle_time_field is non-zero, the arrival time 

of the last packet of the flow must be noted by the switch, and the flow entry has to be removed when it has matched no 

packets in the given number of seconds. When one of the timeouts is exceeded the associated flow entries must be 

removed from the flow table. Flow entries may be also removed by the controller using delete flow table modification 

messages. After deletion of a flow entry the switch must check the flow entry’s flag. If the flag is set, the switch must send 

a flow removed message to the controller. Each flow removed message consists of the following: a complete description 

of the flow entry, the reason for removal (expiry or deletion), the flow duration at the time of removal, and the flow 

statistics at the time of removal. 

1.3.2.3 OpenFlow Channel 

The OpenFlow channel is the interface that connects each OpenFlow switch to a controller. It is usually encrypted and may 

be run over the TCP/IP protocol stack. Using the OpenFlow channel the controller configures and manages the switch, 

receives messages about events from the switch, and sends packets out the switch. A typical OpenFlow controller manages 

multiple OpenFlow channels, each one to a different OpenFlow switch. An OpenFlow switch may have one OpenFlow 

channel to a single controller, or multiple channels for reliability, each to a different controller. The OpenFlow switch 

always initiates connections to an OpenFlow controller. 

All OpenFlow Channel messages must be formatted according to the OpenFlow protocol, which supports three message 

types: controller-to-switch, asynchronous, and symmetric, each with multiple sub-types. Controller-to-switch messages 

are initiated by the controller and used to directly manage or inspect the state of the switch. Asynchronous messages are 

initiated by the switch and used to update the controller about network events and changes to the switch state. Symmetric 

messages are initiated by either the switch or the controller and sent without solicitation.  

The OpenFlow protocol provides reliable message delivery and processing. It does not automatically provide 

acknowledgements or ensure ordered message processing. If the OpenFlow channel fails, the switch may have gone into 

“fail standalone mode”.  
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Switches must process every message received from a controller, and possibly generate a reply. If a switch cannot 

completely process a message received from a controller, it must send back an error message. Packets may be silently 

dropped after OpenFlow processing due to congestion at the switch, QoS policy, or if sent to a blocked or invalid port. 

Switches must send to the controller all asynchronous messages generated by the OpenFlow state changes, such as flow-

removed, port-status or packet-in messages to ensure that the controller has the actual knowledge about the switch state. 

Packets may be dropped also when they fail to match any entries in a flow table, and that table’s default action is to send 

to the controller. Controllers are free to ignore messages they receive, but must respond to echo messages to prevent the 

switch from terminating the connection. 

The order of messages can be ensured through the use of barrier messages. Messages must not be reordered across a 

barrier message and the barrier message must be processed only when all prior messages have been processed. More 

precisely: 

 messages before a barrier must be fully processed before the barrier, including sending any resulting replies or 

errors; 

 the barrier must then be processed and a barrier reply sent; 

 messages after the barrier may then begin processing. 

If two messages from the controller depend on each other they must be separated by a barrier message. 

1.3.3 OpenFlow Control Framework 

The ALIEN project will extend the OpenFlow control framework developed within the OFELIA project to support abstraction 

of network information of equipment that are alien to the OpenFlow technology such as optical network elements, legacy 

Layer2 switches, network processors and programmable hardware (FPGA) [31]. 

The OFELIA Control Framework can be defined as the control plane application for the OFELIA FP7 facility. The main 

purpose of the framework is to automate, simplify and authorize users to create network slices and deploy resources 

available within OFELIA islands for various types of experimental projects. The following principles have guided the 

development work for the OFELIA control framework:  

 Resource allocation: the user should be able to allocate or book resources in an easy way. Within the OFELIA 

testbed the different basic types of resources will be: OpenFlow resources (such as OpenFlow enabled switches, 

switch ports, traffic flows), hosts: (either virtual or physical), in-cluster VMs or any other resource that partners 

want to include in the OFELIA facility. 

 Experiment and project based resource allocation: the resource allocation must be made per project and slice. 

A slice is defined as the smallest indivisible entity that is composed by the resources necessary to carry out an 

experiment. A project may be composed of one or more slices.  

OFELIA adopts the Enterprise GENI (E-GENI) Control Framework (CF) for its facility as a base over which a lot of new features 

and functionalities are added according to OFELIA’s requirements. The E-GENI control framework is based on SFA (a 

federation framework which defines a set of rules by which two or more experimental entities can be federated).  
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The overall OFELIA high-level system architecture is composed of the following layers: 

 Top Layer: contains entities responsible for defining policies for the usage of the facilities;  

 Middle Layer: contains the CF components which manage and monitor the applications and devices in the physical 

substrate layer;  

 Bottom Layer: set of physical resources which include the IT resources (servers, processors) and Network 

resources (routers, switches, links, wireless devices, and optical components) which we identify as the physical 

substrate. 

In this architecture, the User Interface (UI) is a centralized entity which will talk to the all clearing houses in the lower 

layers. The Clearing house/Slice manager is responsible for communicating with all the Aggregate Managers through its 

south bound interface to collect all information regarding the available resources and present it to the UI layer.  

The Middle Layer is composed of:  

 Aggregate Managers, responsible for a set of components and interacting with a set of Resource Managers. 

Depending on how slices are built in the OFELIA infrastructure, AMs may form a hierarchical structure.  

 Resource Managers, providing interfaces for specific devices or resources, e.g., a switch, a server, and virtual 

machine, or a subset of the TCAM entries on switches. RMs perform resource management and virtualization. 

1.4 ForCES 

The basic idea of ForCES (Forwarding and Control Element Separation) is the separation of the forwarding plane and control 

plane in network elements. The ForCES specification contains a modelling language which allows flexible definition of the 

flow tables and flow logic. ForCES flow logic include Logical Functional Blocks (LFBs) connected in flow logic that is described 

in the logic of direct graphs augmented by passage of Metadata and grouping concepts. 

ForCES work in IETF has defined a new environment to build network devices that split the network devices into control 

plane and forwarding plane units. For example, a router could be considered a network element (NE) with a control plane 

running the router protocol and a data plane forwarding IP traffic. 

The drive to have a ForCES NE device split arose from the desire to build hardware forwarding tables out of flexible 

hardware components. These hardware devices included Network Processors and network specific ASICs. 

The ForCES environment defines requirements [7], goals [32], architecture and protocol requirements [7], a controller-

forwarder communication protocol [9]. ForCES also describes a policy on how to building the forwarding engine out of a 

set of logical functional blocks (LFBs)which are connected as a directed graph [11]. ForCES allows many different 

Forwarding Engines (FE) to linked to Controller Engines (CE) via the protocols. ForCES provides a modelling language [11] 

to describe these FE devices so that controllers can load control the devices, load forwarding tables, and keep track of 

statistics. ForCES RFCs also define how the ForCES protocol runs over SCTP [10]. 
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1.4.1 Forces Definitions 

1.4.1.1 Force Forwarding Element (F-FE)  

A logical entity that implements the ForCES Protocol. FEs use the underlying hardware to provide per-packet processing 

and handling as directed by a CE via the ForCES Protocol [7]. ForCES forwarding FE supports forwarding rules insertion. 

1.4.1.2 ForCES Control Element (F-CE) 

A logical entity that implements the ForCES Protocol and uses it to instruct one or more FEs on how to process packets. 

CEs handle functionality such as the execution of control and signalling protocols [7]. The ForCES CE controller may be 

located within the same hardware box on a different blade or across an Ethernet connection, or across a L3 Link (if security 

used). 

1.4.1.3 ForCES Network Element (F-NE)  

An entity is composed of one or more CEs and one or more FEs. To entities outside a NE, the NE represents a single point 

of management. An NE usually hides its internal organization from external entities and represents a single point of 

management to entities outside the NE [7]. The NE’s single point of management can be at the IP layer, the Ethernet layer, 

and at a virtual layer. In this document, the network element is examined as being the set of network functions in the 

hardware that collaborates to act like a switch. This less strict definition allows ForCES to be compared with the Open Flow 

work.  

1.4.1.4 ForCES Pre-Association Phase (F-Pre-A)   

ForCES defines the Pre- Association Phase (F-Pre-A) as "the period of time during which a FE Manager (see below) and a 

CE Manager (see below) are determining which FE is a part of the network element" [7]. 

1.4.1.5 FE Manager(F-FE-Mgr) – ForCES (F-FE-Mgr)  

This is a logical entity that operates in the Pre-Association Phase and is responsible for determining to which CE(s) a FE 

should communicate. This process is called CE Discovery and may involve the FE manager learning capabilities of available 

CEs [7]. 

1.4.1.6 CE Manager (CE-Mgr) – ForCEs CE-MGR (F-CE-Mgr) 

This is a logical entity that operates in the pre-association phase and is responsible for determining to which FE(s) a CE 

should communicate. This process is called FE discovery and may involve the CE manager learning the capabilities of 

available FEs. The CE manager may use anything from statics configuration to a pre-association phase protocol [7]. 
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1.4.1.7 ForCES Protocol (ForCES-Proto) 

While there may be multiple protocols used within the overall ForCES architecture, the term "ForCES protocol" refers to 

only the post-association phase protocol [7]. 

The ForCES protocol operates between the "FP reference points" of the ForCES architecture (as shown in Figure 1.5) [9]. 

Basically, the ForCES protocol works in a master-slave mode in which the FEs are slaves and the CEs are masters [9]. 

The location and exact instantiation of the CE logical entities associated with the FE logical entity is flexible. The CE entities 

could reside on a process on a local switch communicating to other process off the local switch. 

1.4.1.8 ForCES Protocol Layer (ForCES PL) 

This is a layer in the ForCES protocol architecture that defines the ForCES protocol messages, the protocol state transfer 

scheme, and the ForCES protocol architecture itself (including requirements of ForCES TML)" [9]. This layer is defined in 

[9]. 

1.4.1.9 ForCES Protocol Transport Mapping Layer (ForCES TML) 

This is a layer in the ForCES protocol architecture that uses the capabilities of existing transport protocols to specifically 

address protocol message transportation issues, such as how the protocol messages are mapped to different transport 

media (like TCP, IP, ATM, Ethernet, etc.), and how to achieve and implement reliability, multicast, ordering, etc. The ForCES 

TML specifications are detailed in separate ForCES documents, one for each TML [9]. 

The ForCES TMLs focused on are STCP and SSL. TM handles transport of messages (reliable or non-reliable), "congestion 

control", "multicast", ordering, and other things [9]. 

1.4.1.10 LFB (Logical Function Block) 

This is the basic building block that is operated on by the ForCES protocol. The LFB is a well-defined, logically separable 

functional block that resides in an FE and is controlled by the CE via the ForCES protocol. The LFB may reside at the FE’s 

data path and process packets or may be purely an FE control or configuration entity that is operated on by the CE. Note 

that the LFB is a functionally accurate abstraction of the FE’s processing capabilities, but not a hardware-accurate 

representation of the FE implementation. 

1.4.1.11 LFB Class and LFB Instance 

LFBs are categorized by LFB classes. An LFB instance represents an LFB class (or type) existence. There may be multiple 

instances of the same LFB class (or type) in an FE. An LFB class is represented by an LFB class ID, and an LFB instance is 

represented by an LFB instance ID. As a result, an LFB class ID associated with an LFB instance ID uniquely specifies an LFB 

existence.  
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1.4.1.12 Physical Forwarding Element 

This is the physical element that forwards the packets. 

1.4.2 Forces Building Blocks 

The building blocks within the ForCES architecture are the CEs (controller elements), FEs (forwarding elements), and an 

interconnect protocol between CE(s) and FE(s). ForCES also recognizes the logical functions of a FE-Manager and a CE 

Manager. Figure 1.5 shows a diagram that details interaction between all these components [9]. 

CE 1 CE 2

FE 1 FE 2Fi

Fp Fp

Fr

Fp

Fi/f Fi/f

CE Manager

FE Manager

Fc

Ff

Fl

ForcCES Network Element

 

Figure 1.5: Diagram of interactions between CEs, FEs, CE-Manager and FE-Manager [9] 

Fp: CE-FE interface,  

Fi: FE-FE interface,  

Fr: CE-CE interface,  

Fc: Interface between the CE manager and a CE 

Ff: Interface between the FE manager and an FE,  

Fl: Interface between the CE manager and the FE manager,  

Fi/f: FE external interface 
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The ForCES CE controls switching, signalling, routing, and management protocols. Each CE is a logical unit which may be 

located within the same box, different boxes, or across the network. ForCES architecture [33] allows CEs to control 

forwarding in multiple FEs. 

ForCES defines logical Forwarding Elements (FEs) that reside on a variety of physical forwarding elements (PFE) such as a 

"single blade (PFE)", partition within blade, or multiple PFEs in a single box, or among multiple boxes [33]. The ForCES 

logical FEs could also be run within Virtual Machines (VMs) within a single box or a set of boxes or a cloud.  

A single FE may be connected to multiple CEs providing strong redundancy. FE internal processing is described in terms of 

Logical Forwarding Blocks (LFBs) connected together in a directed graph that "receive process, modify and transmit packets 

along with metadata" [9]. The FE model determines the LFBs, the topological description, the operational characteristics, 

and the configuration parameters of each FE. 

The Forces Logical Forwarding Block (LFBs) Library FORCES-LFB provides the class descriptions for Ethernet, IP Packet 

Validation, IP Forwarding LFBs, and Redirection, MetaData, and Scheduling. Forces-LFB document demonstrates how these 

logical blocks can be placed within a machine to support IP Forwarding (IPv4/IPv6) for unicast & multicast and ARP 

processing.  

ForCES architecture [33] allows CEs to control forwarding in multiple FEs. ForCES also recognized the logical functions of a 

FE-Manager and a CE-Manager. The FE manager determines the CE(s) each FE should communicate with. The CE manager 

determines which FEs each CE should communicate with. The ForCES defines the FE Manager and CE-Manager to operate 

in a "pre-association" phase of the communication to set-up the FORCES communication path. Similarities between the 

functions of the CE-Mangers and FE managers of ForCES and modern hypervisors may come from the creative interplay of 

early open source communities. Applications directly interacting with ForCES components (CEs or CE-Managers or FE-

Manager) could be described as interactions with the CEs or CE-Managers. 

1.5 Conclusions 

This section shows, that the idea of Software Defined Networking draws an attention of significant number of 

research-based institutions (e.g. universities, vendors, standardization organizations) – the main players on the networking 

market. The concept of SDN is gaining attention as a viable solution which can address the simultaneous needs for 

virtualization, manageability, security, and agility in networks. Benefits of the SDN architecture, highlighted in this section, 

confirm big importance of this concept for network vendors and operators. The OpenFlow protocol, generally saying the 

OpenFlow ecosystem, becomes a key solution for SDN networks. Another solution for SDN – as an alternative to OpenFlow 

and Cisco ONE – is ForCES introduced by IETF. The ALIEN project will focus on the OpenFlow environment and will continue 

developments already started in the OFELIA project. 

Todays’ networks have been built using different kind of devices like switches, routers or optical equipment. Many of these 

devices are non-OF equipment, not able to support the concept of SDN. The development of the abstraction layer, as the 

ALINE project proposes, will open opportunities for owners of such equipment to participate in experiments in the SDN 

domain. 
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2 Hardware Abstraction Layer (HAL) 

2.1 Overall Information 

Let us start with some brief consideration of the architectural constraints and restrictions imposed by split architectures. 

We will focus on OpenFlow as it is the dominant framework in the SDN arena currently. We expect the reader to be familiar 

with one of the recent OpenFlow specifications, but the observations mentioned here apply to other SDN approaches (like 

IETF’s ForCES framework [8], [34]) as well. In split architecture, a network element is logically fragmented into three 

modules for control, forwarding, and packet processing. Though logically separated, both forwarding and processing 

modules are tightly interwoven and will most likely reside on the same network element (called a data path element in 

OpenFlow). However, with SDN we gain freedom to develop and deploy control modules outside of a network element 

and control the latter via a well-defined control interface. Besides the constraints imposed by relocating the control module 

in terms of signalling delay, available control connection capacity, and so on, both control plane and data plane need a 

common shared data model for synchronizing commands emitted by the control module and interpreted by the 

forwarding/processing logic in the network element. 

OpenFlow’s data model is no exception to this rule and provides an abstract view of the data path element towards the 

control plane, its device state, and available processing capabilities. The data model and its accuracy for depicting the data 

path element’s internal structures and capabilities, defines the network element’s programmability: exposing more details 

of the underlying forwarding and processing engines and pipelines towards the control module may allow control plane 

developers to write control plane logic modules better suited to hardware capabilities, but limits the architectural freedom 

for designing different architectures for data path elements at the same time. Defining a restricted data model that hides 

many of the network element’s details imposes a trade-off, as it simplifies writing suitable control logic, but may also result 

in worse performance numbers in terms of forwarded or processed packets. 

The authors of the OpenFlow specification followed a pragmatic approach as they adopted a stable and well-proven 

interface for controlling network elements: the interface used for controlling the switching chip-set itself. Following such 

APIs has two implications: (a) the level of detail defined for OpenFlow’s data model cannot be more accurate than the level 

of detail exposed by the switching chip-set API, and (b) the set of available processing capabilities is restricted to the set 

of processing instructions defined by the switching chip-set. As the switching chip-sets expose processing commands that 

are low-level in nature (setting a VLAN ID, changing a MAC address, pushing a MPLS header on the frame, and so on), the 

control plane developer in OpenFlow ends up with the need to program data path elements with some kind of network 

element assembler. Initially, the set of supported processing functions in OpenFlow was limited to those protocols typically 

found in campus networking environments like Ethernet and IPv4; subsequent versions introduced support for new 
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protocols like MPLS, IPv6, or GRE encapsulation. However, previous projects like SPARC (Split Architectures for Carrier-

Grade Networks [35]) and CHANGE [36] have documented the need for more advanced protocols in SDN.  

The first non-software based OpenFlow implementations were deployed on ASICs (application-specific integrated circuits), 

so the lack of flexibility in the programming API did not impose a significant restriction to the OpenFlow protocol as ASICs 

themselves are non-programmable. In contrast to these devices, network processor units, FPGA based chip-sets or even 

general purpose processing units like Intel’s x86 CPUs and the associated DPDK framework [37] claim reconfigurable 

processing capabilities while running their NICs at line speed (one of the compromises is potentially a limited number of 

NIC ports attached to these units, though). Here, two major drawbacks of the OpenFlow framework become apparent: the 

OpenFlow protocol lacks a means to program such devices at run-time and OpenFlow’s data model cannot express the 

details of these platforms. To sum up, the requirements for an advanced data model (hardware abstraction) are: 

 Enable the OpenFlow data model to express hardware specific details to the control plane. However, a simplified 

view on the network element should remain possible unless the control plane requests a more detailed view in 

order to avoid burdening the control plane developer with (probably unwanted) high complexity. 

 Provide a means to define new processing actions for programmable network elements when supported at run-

time. This implies a definition of packet frame formats, semantics of specific header fields for packet matching, 

and processing functions. 

 Based on the low-level processing commands defined in OpenFlow, allow the definition of more complex 

compound commands in order to reduce complexity as seen by the control plane. Such compound commands act 

like function definitions, as they cluster a sequence of low-level processing commands in a well-defined functional 

block. This may also reduce the amount of state maintained by a data path element. The control plane should be 

enabled to define new and erase existing function calls at run-time. 

2.2 HAL in Different Operating Systems  

We have seen in the previous section that a mismatch exists between the level of abstraction OpenFlow provides and the 

capabilities of the underlying hardware (or software) implementation of the network element. In the 1980s researchers 

tackled similar problems in the area of operating systems’ research. Let us briefly revisit their findings: Traditional, 

monolithic kernels offer an abstraction of the underlying hardware, providing a well-known (standardized) application 

programming interface for application developers and hiding hardware specific details. With the advent of new networking 

protocols, file systems, and hardware devices, these kernels became more and more bloated stimulating research on and 

a series of micro-kernel implementations that provided only a limited set of functions, relocating higher level services 

towards the application space (e.g. device drivers, networking stacks, etc.). A micro-kernel is a kernel that is minimal (e.g. 

see the L4 micro kernel [38]), i.e. it provides the rudimentary set of functions for process/thread/memory management 

and inter-process communication, but it still defines some model for a hardware abstraction. Contrary to this, the 

exokernel developed at MIT [39] can be seen as an even more radical approach, as it defines only a shim layer organizing 

access to hardware resources among various so-called library operation systems and reveals the true hardware layout 

without any abstraction [40]. The authors of [38] state that its design was inspired by the end-to-end principle: an operating 

system should avoid definitions of a virtualized hardware abstraction as the application designer knows best his 

application’s requirements and any type of abstraction will lead to sub-optimal performance.  
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What do we learn from the preceding paragraph for creation of a Hardware Abstraction Layer for an SDN/OpenFlow 

environment? First of all, contrary to general purpose processors and computing architectures, hardware architectures for 

network elements differ significantly in their exposed features and APIs. Dedicated switching chip-sets (ASICs or FPGAs) 

compete with network processors (probably enriched by dedicated hardware units for conducting specific packet oriented 

operations and optimized software libraries) and general purpose processing units like Intel’s x86 family of CPUs for 

running network code on Linux or BSD. Some of the characteristics typically seen with ASIC designs (compared to a 

reprogrammable FPGA) are: (a) the hard wired and immutable set of parsing, processing, and forwarding actions offered, 

and (b) a proprietary API accessible via a system library usually located on an associated embedded system. When 

comparing the OpenFlow architecture with its processing and forwarding actions and matching structure, some similarities 

to existing ASIC APIs offered by major chip-set vendors seem to be undeniable. On the other end of the hardware spectrum, 

the general purpose CPUs (like the x86 family) offer the highest flexibility in defining APIs ranging from the well-known 

Linux/BSD network interfaces up to specially optimized APIs as offered by Intel’s Data Plane Development Kit (DPDK) [37]. 

NPUs define some kind of compromise: Cavium’s OCTEON family of network processors is based on the MIPS architecture 

including dedicated packet processing optimized hardware and providing a software development kit for the (again) 

proprietary API. To sum up this paragraph, one of the challenges for a Hardware Abstraction Layer is the need to cope with 

the heterogeneity of the existing hardware architectures and associated APIs while not limiting control plane designers to 

write high performance control plane applications due to a high level and inflexible data path model. 

In 2009, the OpenFlow core development team proposed a general model for mapping the virtual data path model as 

defined in the OpenFlow specification to hardware environments [41]. The document defines the APIs and functional 

building blocks for more detailed data path architecture: in principle, a data path is split into three functional layers: the 

highest layer is defined by a hardware-agnostic software based data path and an OpenFlow management endpoint for 

attaching to the control plane. At the bottom, a (vendor defined) hardware driver exposes a (potentially proprietary API) 

towards the agnostic parts of the network element. As a consequence, an abstraction layer binds both the hardware-

agnostic OF logic and its downward interface and the hardware-specific driver to each other, thus hiding effectively any 

vendor-specific details. The architecture defines three reference points (APIs): (1) The OpenFlow protocol defines the 

highest abstraction for the data path and is used to expose its details towards the control plane. (2) The OpenFlow 

Hardware Abstraction API defines an agnostic interface that binds OF logic and adaptation module, and (3) the Vendor 

Hardware API actually attaches a vendor specific driver to the abstraction layer. The draft HAL API was motivated by the 

need to hide and protect proprietary code and APIs for hardware chip-sets and the desire to introduce a modular data 

path software architecture capable of replacing parts of a data path without having to rewrite significant portions of the 

overall system. It is worth mentioning that this document was not updated since release 0.4 in 2009 and has not been 

officially readdressed by one of the succeeding OpenFlow specifications published so far. 

One example for specific hardware architectures is the recently published Intel communications architecture (Crystal 

Forest): The need for generating new fields of revenue for service providers is under discussion currently and more 

powerful processing capabilities are expected to help building enhanced networks with advanced services [42]. Intel 

addresses these needs by positioning its x86 architecture for software based network processing including a set of 

advanced network interface cards and IO chip-sets (e.g. Cave Creek / Intel DH89xx PCH) that have been released in Q4 

2012. However, the complexity of multiple cores, parallel DMA access, NUMA architectures, efficient utilization of PCI 

buses, etc. builds up a significant threshold for creating high performance network applications. A Data Plane Development 

Kit (DPDK) [37] was released end of 2012 for network application developers to ease handling of complexity induced by 

the platform. The DPDK defines an environment abstraction layer (EAL) that hides all platform specific details in terms of 

memory management (allocation, copying) and transfer of packets between the network interface cards and the 

processing units. The DPDK is a typical example of a vendor specific API that may be used within a vendor-specific driver 

to implement the lower-level parts of a data path element. 
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In the preceding paragraphs we have seen the need for modular software architecture for data path elements in order to 

decouple hardware specific constraints from the device agnostic parts, thereby easing maintenance and evolution of a 

data path implementation. The data path model defined by OpenFlow binding the north- and southbound ends of the 

control channel remains unaltered. We have seen that forwarding and processing control of OpenFlow is largely designed 

along the switching chip-set APIs, forcing effectively control plane developers to program the data path in some form of 

low-level switching chip-set assembler (or network/SDN assembler), probably an error prone approach. The Frenetic 

framework introduced in [43] addresses the needs for a more descriptive, easy to use high level programming language 

that provides frequent programming constructs (like a difference among sets of values or negated values like all IP 

addresses not within a specific range, etc.). Frenetic addresses the core problems of the two-tier programming model of 

OpenFlow: in fact, a control plane application is a distributed application as parts of it run within the control plane and 

parts on data path element(s), burdening the programmer with synchronization needs among the distributed components. 

Frenetic’s network programming language aims towards a declarative and modular design, a single-tier programming 

model, race-free semantics, and cost control. The latter refers to the fact, that some constructs (like a large number of 

wildcard related actions) causes a significant burden in terms of processing on a data path element thus affecting the 

element’s overall performance. Cost control in Frenetic is focusing on advanced statistics queries. However, it seems that 

the proposed solution addresses a potential problem in the OpenFlow protocol itself (polling statistics vs. setting pre-

defined rules for asynchronous notifications) that was addressed recently in OpenFlow version 1.3.1. A framework can be 

also defined for sending asynchronous notifications from the data path element towards the control plane based on 

configurable conditions like exceeding a threshold value (e.g. packet rate). Another frequently seen problem with early 

deployments of OpenFlow and addressed by Frenetic relates to the deficiencies of the programming model of the NOX 

OpenFlow controller. A NOX controller may host multiple network applications for controlling a domain of OpenFlow 

enabled data path elements, but does not provide an adequate model for isolating these applications from each other, 

thus two applications may specify contradicting commands leading to unintended state in the network. While this category 

of problems can be seen as a deficiency of NOX itself, coordination of multiple control instances is a common problem to 

SDN control planes. The SPARC [35] project addressed that problem by introducing flowspace registrations where a data 

path element is controlled by several controllers in parallel and multiplexing of control messages is done by each controller 

specifying the part of the overall flowspace it is willing to control (see SPARC’s final architectural considerations in 

deliverable D3.3 [44] for details). 

2.3 Conclusions 

From the existing literature we can draw some initial conclusions: 

 The abstract data model for a virtualized networking element adopted by OpenFlow limits control plane designers 

to write high performance network applications as it hides necessary details of the data path element. A more 

flexible data path model may expose a more detailed view on the hardware platform upon request by control 

plane designers. 

 The forwarding and processing framework of OpenFlow is based on a typical switching chip-set API and as such, 

resembles a low-level network assembler. This low-level interface makes programming a tedious, potentially 

error-prone task. A high level programming language for programming entire SDN domains is desirable. 

 Heterogeneity of hardware platforms has not been addressed adequately by OpenFlow yet. While defining 

immutable sets of processing commands is appropriate for ASIC based designs, general purpose programming 
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environments (NetFPGA, Intel DPDK, etc.) offer far more flexibility to control plane designers, e.g. to define new 

actions and download these to the network element at run-time 

 A modular software design for data path elements allows a separate evolution of OpenFlow management 

endpoint and hardware specific drivers.  

In this project we plan to put specific attention to all abovementioned limitations, while designing the HAL for non-

OpenFlow equipment. 
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3 Network and Protocol Description Languages 

3.1 VXDL 

Virtual Resources and Interconnection Networks Description Language (VXDL) [45] is a language used for specification and 

modelling of virtual resources and interconnection networks. Besides, it allows the description of end resources, including 

also virtual routers and timeline. The main motivation for developing this language was the lack of a similar proposal in the 

context of data grid applications, where both the description of resources and modelling of the interconnection network 

should be addressed. 

Data grid applications require access to infrastructures with enough capacity for high performance data movement 

coordinated with computational resources. The resources available in a grid can be shared by multiple users for different 

computational purposes. In this context dynamic infrastructure provisioning is needed, which combines end resources and 

network virtualization. On one hand, several research projects have been proposed to cope with efficient and flexible 

resource sharing in grids. Several languages have been proposed to describe computer resources, such as ClassAd, vgDL or 

SWORD, all of them with different grammar, parameters and implementation particularities. On the other hand, another 

research projects have explored dynamic lambda path or bandwidth provisioning by end users. In networking description, 

for example, NDL, which is based on XML/RDF, is one of the few languages proposed, but does not include any end resource 

description. Standardization efforts have been done by groups like OGF NML-WG. However, both issues (end resources 

and network description) have not been covered simultaneously by any of them. Therefore, the modelling and specifying 

of the interconnection of both type of resources is still an open issue. In this context, virtualization enable to split the 

physical resources (computational and network resources) and to share them between multiple virtual entities. 

VXDL has been proposed as a language for virtual resource interconnection network specification, which allows extending 

the detailed definition to all components in the virtual infrastructure. The main objective of VXDL is to integrate the 

network interconnection, the virtual constraints and the timeline with the description of resources. 

Virtual infrastructure should be properly defined, since it is fundamental for VXDL. A virtual infrastructure is an aggregation 

of virtual resources interconnected by a network. The efficient decoupling of application specifications from physical 

resources is enabled by the virtualization layer. With regard to hardware, the abstraction layer allows the creation of 

multiple and isolated virtual clusters on the same physical resources at the same time. A virtual cluster is a group of 

machines configured for a joint purpose. When dealing with Grid computing, the resources can be spread in multiple sites 

interconnected over wide area links. A simple abstraction of a virtual cluster does not cope with network QoS and secure 

communication channels. The inability to enforce network QoS may prevent this approach being useful. In this context, 
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the automated provisioning of lightpaths and virtual private network requests is emerging. However, VXDL tries to combine 

machine virtualization with network virtualization and bandwidth reservation through service overlays. 

VXDL aims to specify the interconnection of virtual resources into a virtual infrastructure (Figure 3.1). The VXDL language 

is able to describe the following elements: (1) individual resources and groups; (2) elementary functions assigned to the 

resource; (3) network topology, including virtual representation of routers and links in terms of QoS metrics; (4) 

applications and tools needed for each components; and (5) execution timeline of an application. The grammar of VXDL is 

divided in: the general description of the Virtual Infrastructure, the description of each Virtual Resource, the description 

of the Virtual Topology and the description of the Virtual Timeline. 

 

Figure 3.1: Virtual infrastructure represented by VXDL [45] 

The Virtual Infrastructure general description [46] defines the general attributes of a virtual infrastructure, such as the type 

of infrastructure, the reservation period, the security level, the geographical location, the owner and the list of invited 

users that have access to the virtual infrastructure. 

Regarding the Virtual Resources description, this part of the grammar allows the description of all necessary components 

(nodes and clusters) and the creation of groups between them. These end hosts and host groups are the vertices of a 

resources graph and VXDL allows their basic parameterization, such as minimum or maximum values for CPU speed and 

memory size. Elementary functions of a component are used to identify them, such as computing, storage, 

network_sensor, or router. In this context, a virtual infrastructure can be instantiated by the allocation of distributed 
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resources, for example, specifying the physical location of the component. This enables the local dependency of specific 

executions. 

The third part of the grammar, the Virtual Network Topology, allows the user to specify the network topology requested 

to connect the resources. Links define the interconnection between any virtual resource (e.g. end hosts, host groups or 

virtual routers). VXDL grammar defines the source and destination pair for each link. To simplify complex infrastructures, 

the same link can be applied to different pairs of resources. Moreover, latency and bandwidth parameters can be detailed 

to all links needed. The goal of detailing the network topology is to enable communication-sensitive applications, such as 

transmission of high data volume or low latency applications. Consequently, VXDL allows specifying both network 

components and topology, but there are specific details which are not covered, such as the pricing scheme or physical 

information about links. However, all those parameters can be detailed as external. In VXDL the topology can be 

represented by graphs, where the vertices represent the definitions of the components (i.e. nodes, clusters or routers) and 

the edges identify the links between them (i.e. the network topology). 

The fourth part of the grammar, the Virtual Timeline, is used to specify the moment when the resources are needed, since 

any virtual infrastructure can be permanent, semi-permanent or temporary. Typically, the resources are requested for a 

certain period of time or time slots, and then released in order to be used by other researchers. Time slots duration 

depends on the specific management framework and is configured by the manager. The defined grammar allows detailing 

parameters such as start, after or until when asking for resources. Periods are delimited by temporal mark, so a period can 

be activated after the end of another period. This introduces a rich scenario for timeline execution. 

In a nutshell, VXDL is a language for defining distributed virtual infrastructures, which makes it possible to specify a 

complete environment based on the proposed grammar. It covers the definition of components, the network topology 

and the timeline description, which are the three parts of the grammar. Although it is mainly oriented to the Grid, VXDL 

can be applied in other scenarios. The main contributions are the possibility to describe the timeline (basic for Grid) and 

the complete definition of the network topology, with rules for each link. As a consequence, the scheduling and resource 

utilization are improved by means of VXDL. 

3.2 Network Description Language (NDL) 

The Network Description Language (NDL) [47] was developed by the System and Network Engineering (SNE) research group 

from the University of Amsterdam (UvA) as a necessary element to cope with hybrid networks. Optical hybrid networks 

consist of an IP routed part and a circuit switched optical part, which is commonly known as a lightpath. In this type of 

scenarios, the end-users are able to provision lightpaths on demand through the network in order to move large amounts 

of data or assure a fixed quality of service in terms of bandwidth, jitter or delay. Thus, Optical Private Networks (OPNs) are 

dynamically created with a different topology depending on the application. Currently, most lightpaths are configured 

manually, which can take days or weeks. Moreover, when the lightpath involves multiple domains it could take even longer. 

The NDL is an ontology based on Resource Description Framework (RDF). The main goal of RDF is the description of 

topologies in optical networks in a machine readable format. NDL provides a common semantic for the unambiguous 

communication between the application, the network and the service provider. Moreover, inter-domain network graphs 

can be created with different abstraction levels to assist service discovery applications and lightpath provisioning. One of 

the advantages of relying on RDF is that already established semantic web tools can be reused. 
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NDL has been developed based on the requirements imposed by two significant hybrid networks: SURFnet6 and GLIF. The 

former is the Dutch NREN with 6000 km of dark fibre, which uses Nortel OME6500 DWDM and TDM equipment and Avici 

routers. The latter is the Global Lambda Integrated Facility, which is a virtual organization of research networks and 

institutions whose aim is to build a worldwide networking facility for scientific research. GLIF is formed of optical exchange 

points, GOLEs (GLIF Open Lightpath Exchanges) and links between them. The applications can take advantage of the 

reconfiguration capability of the infrastructure by dynamically assigning resources for a period of time. 

The integration of dynamic lightpath provisioning with the middleware used in e-Science requires the automatic topology 

discovery and pathfinding across multiple administrative domains. A common understanding of networking resources and 

their physical topology is a key requirement that NDL tries to cover. Thus, NDL provides a simple schema which presents 

an overview of the network and the relation between the devices. This schema can be used by applications to automatically 

provision lightpaths. 

Prior to introducing NDL, the RDF should be described. RDF was conceived to represent information about Web resources, 

providing a framework for expressing metadata between applications without meaning loss. This information is expressed 

in triplets: (1) the subject, which is the resource to describe; (2) the property to describe; and (3) the object, which is the 

value of the property. A set of triplets compose a graph, and complex graphs can be created based on the fact that an 

object can also be the subject of another triplet. One common way of expressing RDF graphs is RDF/XML, where the graph 

is encoded in XML format. In RDF, the terminology issue is solved by using URIs. 

Therefore, NDL can be described as a simple ontology in RDF to describe physical networks. The final schema consists of 

four classes and eight properties (Figure 3.2). First of all, NDL defines four classes to express the resource type: (1) Location, 

the physical place where it is located; (2) Device, the physical resource which is connected to the network; (3) Interface, 

used to connect devices to the network; and (4) Link, which is an abstract connection between two interfaces. Moreover, 

NDL has eight properties to define the relations between instances of the previously introduced classes: (1) name, the 

relation between a resource and its name; (2) description, a human-readable description of a resource; (3) locatedAt, the 

relation between resource and location; (4) hasInterface, the relation between devices and interfaces; (5) connectedTo, a 

physical connection between two interfaces or between an interface and a link; (6) capacity, the bandwidth of an interface 

or a link; (7) encodingType, which defines the encoding used on the interface or link; and (8) encodingLabel, which provides 

additional details about the encoding. All these classes and properties allow the description of networks, cables, capacities 

and transport types. For instance, GMPLS terminology can be used as a separate namespace to encode its values by means 

of capacity, encodingType and encodingLabel properties. 
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Figure 3.2: Overview of the Network Description Language [47] 

Sometimes, there is no need to show the complete description of a network. In inter-domain scenarios, it is almost 

mandatory to share as little information as possible to avoid exposing too many details about the network. In those cases, 

and starting from the network description in NDL format, it is possible to extract just the required information. The W3C 

created a query language for RDF, SPARQL, which can be used with NDL. SPARQL is an SQL-like query language which 

makes use of a simple syntax to specify variables and triplet templates to retrieve information. For instance, a simple 

SPARQL query can be sent to automatically retrieve the connections between the devices and their names. 

The Network Markup Language Working Group (NML-WG) within the Open Grid Forum (OGF) has worked to get this work 

standardized. Thus, the modelling effort done in NDL has largely been incorporated and expanded in the NML schemas. 

Apart from solving many operational issues of hybrid networks, NDL has been tested in several other scenarios. For 

instance, it allows the automatic generation of network maps by means of already available web tools for RDF. In the 

context of GLIF, it has also enhanced the interoperability and information exchange between different domains. Finally, 

NDL has facilitated the creation of algorithms for lightpath finding and their later setup in SURFnet6. 

3.3 INDL 

The Infrastructure and Network Description Language (INDL) [48] is an improved version of NDL developed by the same 

research group, SNE at UVA. One of the main limitations of NDL is that it is completely oriented to describe the network 

infrastructure, but it does not cover the physical resources. Therefore, INDL provides a technology independent description 

of complete computing infrastructures, which involves both network infrastructure and resources, by means of a semantic 

approach. It also provides the mechanisms to describe virtualization of resources or services. Finally, INDL can be extended 

to describe federation of computing infrastructures. 
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An infrastructure modelling framework should provide virtualization and management of computing infrastructure, which 

includes description, discovery, modelling, layout and monitoring of resources. The INDL is designed to describe computing 

and cloud infrastructures in a technology independent, extensible and linkable manner. Because of this, it is based on 

semantic web technologies. 

INDL was designed taking into account other available models to describe network and computing infrastructures, such 

as: Open Cloud Computing Interface (OCCI) based on UML (OGF working group); Common Information Model (CIM) which 

provides a detailed XML schema (developed at DMTF); Virtual resources and interconnection networks description 

language (VXDL) which uses XML schema; Resource Specification (RSpec) which also uses XML schemas and is used in the 

GENI project; or NDL-OWL also used in the GENI project and based on Semantic web. 

As in NDL, INDL is based on Semantic Web paradigm, Resource Description Language (RDF) and Web Ontology Language 

(OWL), instead of XML schema or UML. The data is represented in triplets (subject, predicate, object), which provide 

specific information about a subject. OWL is used to describe the ontologies, which means that it specifies the vocabularies 

of triplets and the possible types of predicates. The main advantage of using OWL is that semantic graphs can be easily 

mapped from the computing infrastructure. Moreover, it provides a proper separation between semantics and syntax. The 

OWL Schema defines the ontology and semantics, whereas XML/RDF is used to define the syntax. XML/RDF uses XML to 

describe the RDF triplets. 

 

Figure 3.3: INDL Ontology [48] 

Based on the requirements imposed by GEYSERS and NOVI (both are FP7 projects), INDL has improved NDL by basically 

adding support for IT resources and virtualization. Currently, the INDL ontology has two main classes: Resource and Service. 

The Resources are identified by a unique URI, and name and three subclasses are defined for it: Node, Network Element 
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and Node Component (Figure 3.3). Regarding the Service class, different subclasses can be defined depending on the 

specific domain in which INDL is applied. 

The virtualization support is modelled by introducing the VirtualNode element, which is a subclass of Node. In order to 

implement a virtual node, the Node class is used. In the end, the Node class can be a physical or a virtual resource, even a 

layer of virtualization can be defined. 

A Node Component is part of a Node, and a Node consists of a number of Node Components. The Node Component is an 

abstract class which specifies the basic components of machines, such as: (1) Memory Component which describes the 

memory size; (2) Processor Component, which specifies the number of cores and speed of CPUs; (3) Storage, which defines 

the available space for local storage; and (4) Switching Component, which handles the network traffic from Interface to 

Interface. 

The Network element is an abstract class to model network connectivity and has two subclasses: Interface and Link. On 

the one hand, the Interface class defines the point of connection of a Node to the network. Each node can have multiple 

inbound and outbound interfaces. The internal relations between inbound and outbound interfaces define the switching 

inside the node, and are modelled by the switchTo property of Interface. On the other hand, the Link class define an 

unidirectional connection between two Nodes. In general, the network connectivity is defined as unidirectional. Each link 

is connected to two Interface classes, one acting as source and the other as sink. For a bidirectional connection, two links 

need to be defined. 

The main benefit from using INDL is that virtualization, functionality and connectivity are decoupled. This characteristic 

makes it easier to extend part of the ontology (e.g. defining new functionalities) without impacting the rest of the model 

(e.g. virtualization and connectivity). Furthermore, the ontology allows using the same connectivity and functionality 

models for both physical and virtual nodes. 

3.4 NetPDL 

Currently, most applications use their own packet description hardwired in their code. Network Protocol Description 

Language (NetPDL) [49] was proposed as an application-independent protocol description database, which potentially can 

be shared among several applications. In a nutshell, NetPDL is an extensible XML-based language for packet header 

description. The shared database for protocol description is just one of the potential use cases, but there are other 

possibilities. 

Dealing with packet headers is a common task in several network applications, such as packet sniffing, firewalling, traffic 

analysis or packet routing. However, there is no solution to delegate the processing of packet header to a single optimized 

component. Each application is responsible for not just processing these headers, but also defines them in an 

implementation dependant fashion. A kind of universal protocol header database can benefit all these applications, which 

currently are using proprietary syntax to describe packet headers in the code. As a consequence, supporting a new protocol 

requires the generation of a new executable. NetPDL enables the creation of a shared database with all the updated 

description of network protocol headers. 

The main design objective of NetPDL is simplicity in its description of packet header formats and protocol encapsulations. 

Because of this, NetPDL is based on eXtensible Markup Language (XML), which is usually parsed at run-time by applications. 
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This allows dynamic updating of the protocol header database, which enables the transparent support of newer versions 

of protocol definitions. 

NetPDL mainly focuses on packet header description, protocol encapsulation description and extensibility. There are other 

proposals used by some applications, such as Libpcap, Analyzer, FALCON, GASP, SPY, NPL, Solidum PAX Pattern Description 

Language, ASN.1, ACT ONE or ABNF, but none of them covers all the requirements. Most of them do not have a proper 

support for extensibility and they are also too complex. 

Extensibility is one of the key design features of NetPDL and one of the main reasons for choosing XML as the base for 

building the protocol description language. New XML elements and attributes can easily be added while maintaining 

backward compatibility. Moreover, it can also be edited simply by basic text editors. Furthermore, XML introduces 

portability across platforms and the possibility enforcing strong syntactical validation with application-independent tools 

according to DTD and XML Schema standards. 

As previously stated, the target of NetPDL is to describe packets as defined by network protocol specifications, which 

includes: (1) the packet format, a list of fields and their format; and (2) the protocol encapsulation, which defines the rules 

that determines the way the sequence of bytes constituting the payload should be interpreted. Additionally, the design 

objectives are: (1) Simplicity, with an intuitive syntax that can be easily understood and written using a text editor; (2) 

Completeness, including enough primitives to describe any packet header or the possibility to define external plug-ins; (3) 

Extensibility, to support the addition of new primitives and backward compatibility; and (4) Efficiency, with a performance 

comparable to custom code based on hardwire packet descriptions. 

 

Figure 3.4: Part of the NetPDL description of the Ethernet header [49] 

The general structure of a NetPDL document starts with a <netpdl> tag. A set of protocol descriptions can be referenced 

by using a <proto> element. Each of these descriptions includes a group of <fields> tags to specify header formats and 

<next-proto> elements to define the encapsulation. The processing of a packet is done by matching the byte sequence 

with the elements of the description in the same order defined in the NetPDL file. When no suitable protocol description 
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is available, there are two predefined protocols for processing the remaining data: (1) _startproto, for the first 

encapsulation; and (2) _defaultproto, for the last protocol. 

Although the majority of header fields are defined with a fixed length, there are other fields with variable length that can 

be obtained only when processing the packet. NetPDL defines six basic types to categorize a field: (1) <fixed>, for fields 

with a fix length; (2) <masked>, which identifies the part of the header that contains the bit fields; (3) <bit>, for a bit field; 

(4) <variable>, for fields with a variable length that can be described by specific attributes; (5) <line>, for line fields ended 

by a carriage return or line feed; and (6) <padding>, which is used to align a protocol header to a 16 or 32 bit limit. In 

general, a field can be completely characterized by its length, its position and the number of occurrences. However, the 

latter two attributes are not always needed. 

In order to obtain an advanced description of packet headers, some additional elements are defined: (1) field blocks; (2) 

conditional elements; (3) expressions; (4) repeating a field; (5) lookahead operands; and (6) custom plugins. First of all, the 

<block> element is used to improve readability by tagging a portion of code, similar to a macro expression. The <includeblk> 

tag is used to reference certain <block> content. Therefore, when an <includeblk> tag is found, it is replaced by the contents 

included in the <block> element. This capacity is used to isolate a portion of NetPDL code and adds compactness, since the 

same block can be reused several times. The second type of elements, the <switch>-<case> and <if> elements allow the 

conditional inclusion of a field or a value depending on the value of another field. The former introduces the capacity to 

define multiple alternative descriptions, whereas the latter element enables the capacity to include some fields depending 

on the evaluation of an arbitrarily complex condition. The <expr> element can be used to define the condition. Regarding 

the third type of elements, mathematical, logical and string expressions are possible in NetPDL descriptions to improve the 

conditional elements. Native XML structures are used to define these expressions. Concerning the fourth type of elements, 

the <loop> element allows the repetition of a field or group of fields, with different possibilities: size-bounded loop 

(depending on a given value), occurrence-bounded loop (depending on the number of times), while-bounded loop 

(depending on a condition), and do-bounded loop (same as while-bounded loop but at least once is present). The <loopctrl> 

element permits to restart or interrupt a corresponding repetition (similar to break and continue instructions). The fifth 

type of elements, the lookahead operands allow to look at some bytes before evaluating certain expressions. Finally, the 

<plugin> element enables to delegate the handling of some protocol header feature to external code. This is very useful 

when dealing with complex structures. 

As previously mentioned, one of the main objectives of NetPDL is to describe the protocol encapsulation, which defines 

how to interpret the following bytes. Protocol encapsulation is handled by the <nextproto> element. Usually, the 

encapsulation is based on the value of one or more header fields, so the relationship between this value and the 

corresponding encapsulated protocol should be specify. The <protoref> element is used exactly for defining this 

relationship. Sometimes, <switch>-<case> or <if> elements are used to evaluate a condition before assigning the correct 

encapsulated protocol. In other cases, further processing is needed the proper identification is made by evaluating a value 

of a field within their own header. For this reason, the <presentif> element supports to define a condition while processing 

the packet header. The use of a version field is very typical in these cases. 

Finally, NetPDL allows the declaration of variables, which can be manipulated at run time. Depending on the validity and 

scope of a variable, there are different categories of variables. On the one hand, a variable can be volatile is it is only valid 

while processing one packet, or static if its value is preserved through different packets. On the other hand, a variable can 

be local if it is only valid when processing fields of a single protocol header, or global if the variable is valid while processing 

the entire packet. Therefore, four categories are possible: local-volatile, local-static, global-volatile, and global-static. A 

number of predefined global variables are present in each NetPDL engine, such as the link-layer type, the total number of 

bytes for processing, the number of bytes already processed or a timestamp. The user is able to create their own variables. 
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One of the main improvements of NetPDL is the extensibility of the language. New attributes and elements, including their 

validity range, can be added very easily while maintaining backwards compatibility. One example of this extensibility is the 

NetPDL Visualization Extension, which has been designed to support protocol analysers. It provides additional information 

needed for displaying the packet fields. Two types of views are defined: a summary view and a detailed view. Although XSL 

Transformations can be used, this implies to learn a new programming language to handle visualization. By contrast, 

NetPDL Visualization Extension defines only a few visualization primitives. All the relevant visualization elements are 

defined through the <showtemplate> element, and the most important attributes are: (1) showtype, which determines the 

format of each byte (hexadecimal, ascii, binary or decimal); (2) showgrp, which specifies how the bytes must be grouped; 

and (3) showsep, which defines the separator string between the groups. The <showdtl> element can be used to describe 

more sophisticated displaying rules. Next, the <showmap> element compares the value of a field against a set of choices 

to define the displaying format. Additionally, a set of primitives are defined for creating a summary view of each packet. 

In summary, NetPDL is an extensible XML-based language for describing the format of protocol headers. New protocols 

can be easily specified with the basic NetPDL primitives already defined. Moreover, these primitives can be also easily 

extended to cope with specific needs. The syntax is easy to understood and an easy to implement parsers thanks to a large 

number of XML tools and libraries. 

3.5 Conclusions 

This section presents some of the most relevant network and protocol description languages related to the work defined 

in the ALIEN project. Next, all these languages are summarized and compared.  

The VXDL is a language that includes both network and end resources description. It is also useful when dealing with virtual 

infrastructures, since it was originally designed for Grid computing. Due to its origins in the Grid, the time-based sharing 

of resources is supported by the language, which is able to describe the execution timeline.  

The NDL is a very simple language in XML/RDF useful to describe the network infrastructure and its topology, but it does 

not support the description of end resources. It was designed to cope with optical hybrid networks; therefore it supports 

the description of optical circuit switched resources. One of the main strengths of NDL is the set of parsers (since it is based 

on XML) and tools available to process the data. For instance, these tools can generate different views of the same 

resources very easily and just expose part of the internals of the network. 

One of the main limitations of NDL is the lack of support for describing end resources. The INDL was designed to overcome 

this limitation. It is based on Semantic Web paradigm and Web Ontology Language (OWL). In a nutshell, INDL adds the 

computing infrastructure and virtualization to the NDL. 

The NetPDL is quite different from the previous languages, since it is a language to describe new protocols (e.g. headers) 

instead of network infrastructure or computational resources. NetPDL is useful to have a common language to describe 

protocols and also as a known mechanism to extend those protocols. This ability could be useful to describe new extensions 

to the OpenFlow protocol (e.g. matching). 

There are several areas in which these languages can be useful for the ALIEN project, such as the description of the network 

infrastructure or the time-based sharing of resources. Regarding the description of network resources, there are two 

separate targets in which this capacity would be needed. On the one hand, the design of the Hardware Abstraction Layer 
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(HAL) could benefit from it when dealing with the emulation of a set of interconnected network elements as a single 

resource. The description of the physical connectivity would be a valuable input to automate this process, mainly when 

the auto-discovery is not an option. On the other hand, the description of the topology can be also relevant for the CCN 

application in order to take decisions based on this description, use different paths and avoid loops. Initially, NDL will be 

explored to support the description of the network resources. Eventually, INDL could be used to add computational 

resources to this description. 

Regarding the time-based sharing of resources, the VXDL ability to describe this type of sharing in the context of Grid 

computing could be explored when designing the integration of ALIEN resources under the OFELIA Control Framework 

(OCF) in a time-based manner. The direct adoption of this language for this task could not be the best option due to 

compatibility issues that could arise with the current OCF development. However, VXDL could be a reference when 

designing this integration based on time slots. 

To conclude, the integration of these languages in the ALIEN project will depend on the specific necessities and restrictions 

of each module. 
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4 Intermediate Representation Languages 

The “intermediate representation” is the term from computer science. It is a language or data structure used during 

internal steps of computer program compilation. The intermediate representation allows for computer program analysis, 

optimization and transformations to another shape (e.g.: machine code). It could be some graph data structure like AST 

(Abstract Syntax Tree) or DAG (Direct Acyclic Graphs), which will represent logical dependencies between various parts of 

program. There could be also used, a dedicated low-level intermediate language for representing an input program. Such 

intermediate language is composed of instructions representing basic operations, doesn’t contain control flow information 

and operates on unlimited number of variables/registers. Sometimes very popular programming language with good 

performance become an intermediate language for implementing a new languages (many modern high-level languages 

like Python, Ruby, Perl, Haskell, etc  are implemented in C). 

4.1 Hardware Description Language (HDL) 

The perfect definition of Hardware Description Languages can be found in Wikipedia [50]. It states: "in electronics, a 

hardware description language or HDL is any language from a class of computer languages, specification languages, or 

modeling languages for formal description and design of electronic circuits, and most commonly, digital logic. It describes 

the circuit's functionality and operation, its design and organization, and tests to verify its operation by means of 

simulation". 

There are two basic ways to describe digital circuits [51], [52], [53], [54]: 

 behavioral - the designer defines the relationship between outputs and inputs of the system, and the system 

implementation is realized by a specialized compiler; 

 functional - the designer defines the functional blocks and the relationships between them. The functional blocks 

can be very simple, such as elementary logic functions, as well as complex, such as memory, registers, adders or 

even more complicated. 

HDL allows various optimizations, such as minimization of functions, simplifying the circuit by the use of prefabricated 

elements, designed to test systems and their functional simulation. 



Report on Hardware abstraction models   

 

Project: ALIEN (Grant Agr. No. 317880) 
Deliverable Number: D2.1 
Date of Issue: 04/10/2013 

 

42 

The history of hardware description languages dates back to the 1950s, it became necessary to automate certain parts of 

design processes. HDL language first developed in the United States, leading to ANSI standards, and later international 

standards such as those from IEEE. 

The hardware description languages are very convenient, because they allow description of hardware without reliance on 

a particular technology. Actually there exist more than 20 different hardware description languages, but the most popular 

are VHDL and Verilog. 

4.1.1 VHDL 

An early version of Very High Speed Integrated Circuits Hardware Description Language (VHDL) was developed at the U.S 

Department of Defence in the 1980s. The first IEEE standard for this language comes from 1987 [55]. After many changes 

and updates, the current version is defined in IEEE 1076-2008 [56]. Currently the language is used for the definition of ASIC 

chips and mainly programming FPGA circuits. In preparing FPGA designs [57], various design environments can be used 

(for example Xilinx ISE, Altera Quantas or Mentor Graphics HDL Designer). These IDEs translate VHDL code into an RTL 

(Resistor-Transistor Logic) [58] schematic of the desired circuit. Such a prepared schematic can be verified with simulation 

tools. These tools can generate input signals for  functionality to be tested and present the waveform at different stages 

for the designed circuit. The designer can observe the behaviour of particular blocks and accept or redesign the project. 

The final stage of preparation usable version of VHDL project is the translation of VHDL model into physical structure of 

particular FPGA chip, i.e. into its internal gates and wires. The execution of a project consists of downloading prepared files 

onto chip using a dedicated interface. Figure 4.1 shows an example of VHDL code for a simple bidirectional counter [59]. 

Typical functionality of hardware languages allows to define many concurrent activities. The code in Figure 4.1 describes 

only one, it can be run simultaneously with many others. 

 

Figure 4.1: Example of VHDL code (code for simple counter) 
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The main advantage of VHDL is that it allows the behaviour of the required system to be described and verified (simulated 

with dedicated tools) before synthesis tools translate the design into real hardware (gates and wires). It allows debugging 

of the system in software before a hardware implementation takes place. 

4.1.2 Verilog 

Verilog is standardized as IEEE 1364. There are several implementations of Verilog (SystemVerilog, Verilog 2001, Verilog 

2005 [53], [54]). Theirs functionality is similar to VHDL. The newest Verilog standard comes from 2009. In its usage, this 

language is the same as in case of VHDL. The majority of tools can work with both languages and it depends on the 

particular designer which language will be used for a particular module. In some cases, the blocks of code written in VHDL 

and Verlilog can be mixed on a single chip. The set of keywords in Verilog is similar (but not identical) to the analogous set 

for VHDL. The same functionality can be obtained with both languages but in a different way. The differences are visible 

especially in features for simulations. The interesting fact about both languages is that not all functionality can be 

implemented in hardware - some sections are used only in the development process. These sections allow debugging in a 

more effective and convenient way. When a file is prepared for downloading to a physical device, many restrictions are 

checked. For example, the longest signal paths and the clocking (frequency conditions) are analyzed.  

The Figure 4.2 shows example code for a bidirectional counter written in Verilog code [59]. The same functionality is 

realized by code from the Figure 4.1. 

 

Figure 4.2: Example of Verilog code (code for simple counter) 

4.2 LLVM 

LLVM (formerly the Low Level Virtual Machine) is a framework and infrastructure [LLVM] for the code compilation, 

containing a set of modular tool-chain components and libraries (e.g., assemblers, compilers, debuggers, optimizers, code 

generators debuggers, linkers etc.). The LLVM compiler infrastructure, thanks to well-defined interfaces, provides reusable 

and replaceable modules for building custom compilers and, in consequence, reducing the time and cost of providing of a 

compilation environment for any programming language. Now, LLVM is used as a common infrastructure to implement a 
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broad variety of statically and runtime compiled languages (e.g. C, C++, Java, .NET, Python, Ruby, Scheme, Haskell, D, as 

well as countless lesser known languages).  

LLVM was designed as an alternative to monolithic compilers such as GCC, where there is no way to reuse pieces, and 

there is very little sharing across language implementation projects. LLVM follows three-phase design pattern for compilers 

[60], where major components of the compiler are the following: 

 Frontend – parses source code, applies preprocessing, makes lexical and syntactic analysis, checks variable types, 

reports code errors and builds an intermediate representation (IR) to represent the input code. 

 Optimizer (middle-end) – transforms an intermediate representation many times for purpose of the code 

optimization (removal of unreachable code, propagation of constant values, eliminating redundant computations) 

in order to improve the code's running time. 

 Backend – translates an intermediate representation into the machine code (e.g.: replace generic IR instructions 

with target instructions, assigns registers for the program variables) with usage of specific features of the target 

CPU architecture like special instructions or parallel execution. 

 

 

Figure 4.3: LLVM's implementation of the Three-Phase Design [61] 

The compiler decomposition into the frontend (see Figure 4.3), the middle-end and the backend means that a developer 

of a new language can focus only on providing a good implementation of a new language fronted and reuse optimizers and 

backends that already exist for many target platforms (e.g.: x86, ARM, PowerPC, SPARC, etc). Additionally, if a developer 

implements a backend that provides a faster code execution for a given platform, then this work can be easily adapted for 

all already existing languages within the LLVM framework. 

A modular design of LLVM components with usage of a single IR representation, exchanged between LLVM components, 

gives additional opportunities for users. The user has the freedom to decide how LLVM components will be used, i.e. what 

is order of LLVM components within the compiler tool-chain. As an example, in Figure 4.4 install-time optimization use 

case [61] is presented. Install-time optimization is the idea of delaying code generation even later than link time in order 

to find out the specifics of the targeted device and applying the best possible optimizations to generated machine codes. 

Within this use-case, we can see that LLVM optimizers can be used in many places of a compilation process and the 

compilation process itself can be easily adapted to the complex scenario (i.e. usage of different languages in a project with 

usage of compilation-time, link-time and install-time optimizations). 
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Figure 4.4: Install-time optimization with usage of the LLVM infrastructure [61] 

The LLVM framework is built around a well-documented intermediate representation (IR) of code [62]. LLVM defines a 

common, low-level IR code representation in Static Single Assignment (SSA) form, with several novel features. LLVM 

contains a simple, language-independent type-system that exposes the primitives commonly used to implement high-level 

languages features like a mechanism for implementing the exception handling. The LLVM IR representation describes a 

program using an abstract RISC-like instruction set but with key higher level information for effective analysis. The LLVM 

code representation is designed to be used in three different forms: as an in-memory compiler IR, as an on-disk bit-code 

representation (suitable for fast loading by a Just-In-Time compiler), and as a human readable assembly language 

representation. All three forms of LLVM IR are equivalent. By providing type information, LLVM IR can be used as the target 

of optimizations. 

; file: helloworld.s  

 

; External declaration of the puts function 

declare i32 @puts (i8*) 

 

; Declare the string constant as a global constant 

@global_str = constant [13 x i8] c"Hello World!\00" 

 

; Definition of main function 

define i32 @main() { 

 

    ; Convert array [13 x i8] to i8’s pointer 

    %temp = getelementptr [13 x i8]* @global_str, i64 0, i64 0  

 

    ; Call puts function to write out the string to stdout 

    call i32 @puts(i8* %temp)  

 

    ret i32 0 

} 

Figure 4.5: Hello World example of IR human readable notation [63] 

In Figure 4.5, we see an IR code example which prints “Hello World!” message (language tutorials always start with such 

example). The IR code [62] is similar to assembly languages because it contains low-level instructions and memory model 

that is only slightly richer than in a standard assembler. In the LLVM IR code, we can put comments (begins with ; 

character), defines global identifiers (begins with @ character) and local identifiers (begins with % character). Any variables 

and constants have strict typing. The integer type is declared as iN (e.g.: i8 – 8-bit integer, i32 – 32-bit integer, etc). There 

are also derived variables types like: 

 arrays (e.g. [40 x i32] – array of forty 32-bit integer values),  

 vectors (e.g. <8 x float>  – vector of eight 32-bit floating-point values), 
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 pointers (e.g. [4 x i32]* – a pointer to array of four i32 values), 

 structs (e.g. { i32, i8, float } – a structure of 32-bit integer, 8-bit integer and float value), 

 and functions (e.g. {i32, i32} (i32) – a function taking an i32, returning a structure containing two i32 

values). 

The LLVM instruction set captures the key operations of ordinary processors but avoids machine-specific constraints such 

as physical registers, pipelines, and low-level calling conventions. The LLVM IR declares the following rich set of instructions 

[62]: 

 termination instructions (e.g. ret, br, switch, invoke, resume, etc), 

 binary operations (e.g. add, fadd, sub, fsub, mul, fmul, udiv, sdiv, fdiv, etc), 

 bitwise binary operations (e.g. shl, lshr, ashl, and, or, xor), 

 vector operations (e.g. extractelement, insertelement, shufflevector), 

 memory operations (e.g. alloca, load, store, fence, getelementptr, etc), 

 conversion operations (e.g. trunk … to, zext .. to, pfext .. to, ptrtoint .. to, bitcast … 

to, etc), 

 and others. 

The LLVM IR code can be compiled and executed using LLI tool from the LLVM infrastructure (see Figure 4.6). 

Host# lli helloworld.s 

Hello World! 

Figure 4.6: Compilation and execution of LLVM IR “Hello World” example with usage of LLI tool [63] 

The LLVM IR has no direct notion of high-level constructs such as classes, inheritance, or exception handling semantics and 

only provides primitives to implement those features of supported languages. LLVM also does not specify a runtime system 

or a particular object model. The LLVM is used instead to the implementation of runtime systems for higher level languages. 

LLVM does not guarantee type safety, memory safety, or language interoperability and this way LLVM cannot be a direct 

intermediate IR form of high-level languages. 

4.3 CUDA 

CUDA (Compute Unified Device Architecture) is a parallel computing platform and programming model invented by 

NVIDIA. [64] This architecture is used on all NVIDIA hardware to harness the power of the graphics processing unit (GPU) 

and hence increase computing performance. To simplify programming the CUDA platform is provided with CUDA-

accelerated libraries, and extensions to standard programming languages, including C, C++, Fortran, JAVA and Python. The 
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programmers write source codes in one of these programming languages and then compile them with the provided CUDA 

compiler (for C language it is ‘nvcc’). In Figure 4.7 you can see the NVIDIA’s CUDA architecture. 

 

Figure 4.7: NVIDIA’s CUDA architecture [65] 

The most interesting feature of the CUDA architecture in the context of the Intermediate representation languages is the 

PTX (Parallel Threading Execution). PTX is a low-level, parallel thread execution virtual machine and instruction set 

architecture (ISA). PTX exposes the GPU as a data-parallel computing device.  

PTX programs are a collection of text source modules (files). PTX source modules have an assembly-language style syntax 

with instruction operation codes and operands. Pseudo-operations specify symbol and addressing management. The ptxas 

(optimizing backend compiler) optimizes and assembles PTX source modules to produce corresponding binary object files. 

Source PTX modules are ASCII text.  Lines are separated by the newline character (\n). All whitespace characters are 

equivalent; whitespace is ignored except for its use in separating tokens in the language. The C preprocessor cpp may be 

used to process PTX source modules. Lines beginning with # are preprocessor directives. The following are common 

preprocessor directives: 

#include, #define, #if, #ifdef, #else, #endif, #line, #file 
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A PTX statement is either a directive or an instruction. Statements begin with an optional label and end with a semicolon. 

An simple example of code using PTX is presented in Figure 4.8 [66]: 

 

 .reg     .b32 r1, r2; 

 .global  .f32  array[N];  

 

start:  mov.b32   r1, %tid.x; 

 shl.b32   r1, r1, 2;          // shift thread id by 2 bits 

 ld.global.b32 r2, array[r1];  // thread[tid] gets array[tid] 

 add.f32   r2, r2, 0.5;        // add 1/2 
 

Figure 4.8: Listing of example PTX code [66] 

Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers. The directives in PTX are listed 

in Figure 4.9 [65]. 

 

Figure 4.9: PTX directives [65] 

Instructions are formed from an instruction opcode followed by a comma-separated list of zero or more operands, and 

terminated with a semicolon. Operands may be register variables, constant expressions, address expressions, or label 

names. Instructions have an optional guard predicate which controls conditional execution. The guard predicate follows 

the optional label and precedes the opcode, and is written as @p, where p is a predicate register. The guard predicate may 

be optionally negated, written as @!p. The destination operand is first, followed by source operands. 

Instruction keywords are listed in Figure 4.10. 
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Figure 4.10: PTX instruction keywords [65] 

With the existence of multiple NVIDIA GPU architectures, it is not always known at compile time on what type of GPU the 

application will run. The importance of this issue is directly proportional to the number of different GPUs. NVCC, together 

with the CUDA runtime system, provides three mechanisms for dealing with this: 

1. Storing more than one generated code instance embedded in the executable.  

2. Allowing PTX intermediate representations as generated code. 

3. Maintaining device code repositories external to the executable, in directory trees, or in zip files.  

More than one compiled code instance for the same device code occurring in the CUDA source allows the CUDA runtime 

system to select an instance that is compatible with the current GPU, which is the GPU on which the runtime system is 

about to launch the code. If more than one compatible code instances are found, then the runtime system can select the 

‘most appropriate’, and in case the most appropriate code instance is still PTX intermediate code, the runtime system may 

decide to compile it for the current GPU. PTX intermediate code is especially useful for distributed libraries. 

External code repositories allow fine tuning as more of the compilation environment becomes known: because such 

repositories are directory trees in an open format (normal directory or zip format), any PTX code that it contains can be 

‘hand- compiled’ after distribution. One particular way of such fine tuning is to use runtime compilation while enabling a 

device code translation cache: this will result in a new code repository, or it will extend an existing one [66].  
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CUDA also allows ‘Just-in-Time Compilation’ of the PTX code. Any PTX code loaded by an application at runtime is compiled 

further to binary code by the device driver. This is called just-in-time compilation. Just-In-Time compilation increases 

application load time, but allows the application to benefit from any new compiler improvements coming with each new 

device driver. It is also the only way for applications to run on devices that did not exist at the time the application was 

compiled, as detailed in Application Compatibility [65]. 

When the device driver just-in-time compiles some PTX code for some application, it automatically caches a copy of the 

generated binary code in order to avoid repeating the compilation in subsequent invocations of the application. The cache 

– referred to as compute cache – is automatically invalidated when the device driver is upgraded, so that applications can 

benefit from the improvements in the new Just-In-Time compiler built into the device driver. 

4.4 OpenCL 

Open Computing Language (OpenCL) is a computing framework for heterogeneous platforms proposed by Apple as a 

solution for general-purpose computing on graphics processing units (GPGPU). OpenCL provides developers with a unified 

interface for computation on central processing units (CPUs), graphics processing units (GPUs), digital signal processors 

(DSPs) and other processors. OpenCL programming language is based on C99 [67] and provides low level access to various 

computing resources (more low level than CUDA). 

The Platform model for OpenCL (see Figure 4.11) consist of a host connected to one or more OpenCL devices (e.g. CPU or 

GPU). An OpenCL device is divided into one or more compute units (CU) (e.g. single core in CPU or GPU) which are further 

divided into one or more processing elements (PE) (i.e. virtual scalar processors). 

 

Figure 4.11: OpenCL platform model 

Execution of an OpenCL program occurs in two parts: kernels that execute on one or more OpenCL devices and a host 

program that executes on the host. The host program defines the context for the kernels and manages their execution 

[68]. A kernel is a function declared in a program and executed on an OpenCL device. Example of simple kernel code is 

presented on Figure 4.12. Kernels are dynamically compiled from intermediate representation into native code with JIT 

compiler. 
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__kernel void dot_product (__global const float4 *a, 

                           __global const float4 *b, 

                           __global float4 *c) 

{ 

    Int gid = get_global_id(0); 

    C[gid] = a[gid] + b[gid]; 

} 

Figure 4.12: Listing of example kernel code [69] 

The host program is responsible for configuring environment, preparing kernels, configuring CUs and PEs, setting kernel 

arguments and starting its execution. Example of a host program is presented on Figure 4.13. 

// create the OpenCL context on a GPU device 

context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 

 

// get the list of GPU devices associated with context 

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb); 

devices = malloc(cb); 

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL); 

 

// create a command-queue 

cmd_queue= clCreateCommandQueue(context, devices[0], 0, NULL); 

free(devices); 

 

// allocate the buffer memory objects 

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                            sizeof(cl_float4) * n, srcA, NULL); 

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                            sizeof(cl_float4) * n, srcB, NULL); 

memobjs[2] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_float) * n, NULL, NULL); 

 

// create the program 

program = clCreateProgramWithSource(context, 1, (const char**)&program_source, NULL, NULL); 

 

// build the program 

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 

 

// create the kernel 

kernel = clCreateKernel(program, "dot_product", NULL); 

 

// set the args values 

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]); 

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]); 

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]); 

 

// set work-item dimensions 

global_work_size[0] = n; 

local_work_size[0]= 1; 

 

// execute kernel 

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, local_work_size, 0, 

NULL, NULL); 

 

Figure 4.13: Listing of example host program [69] 

OpenCL currently offers portability only at the source code level because specification does not cover implementation 

aspects. Each hardware vendor provides its own implementation of the OpenCL framework and thus there is no standard 

intermediate representation for OpenCL. From the three biggest vendors, two (AMD and Intel) are using a LLVM IR in its 

implementations and one (nVidia) is using its own PTX language. The Khronos Group which is responsible for maintaining 
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the development of OpenCL specifications intends to change this situation by creating the OpenCL Standard Portable 

Intermediate Representation (SPIR). The SPIR will be based on LLVM IR because many of the OpenCL vendors already base 

their technology on LLVM and this makes LLVM IR the de facto OpenCL IR and a natural candidate for SPIR. 

4.5 JVM 

The Java Platform [70] acts as a buffer between a running Java program and the underlying hardware and operating system. 

Java programs are compiled to run on a Java Virtual Machine (JVM). The virtual machine runs the program and the JVM 

mechanisms gives the program access to the underlying computer's resources. No matter where a Java program goes, it 

need only interact with the Java Platform. It needn't worry about the underlying hardware and operating system [71]. Java 

platform execute a program in three phases (see Figure 4.14): 

 first Javac compiling the source code into bytecode,  

 secondly passing the bytecode to the virtual machine, 

 finally the JVM  executes the bytecode as machine code 

 

Figure 4.14: Java runtime environment 

Because the Java programming language is platform independent so are the ranges and behaviour of its primitive types 

inserted in the language [70]. In C or C++ languages, the range of the primitive type ‘int’ is determined by its size, and its 

size is determined by the target platform. The size of an ‘int’ in C or C++ is generally chosen by the compiler to match the 

word size of the platform for which the program is compiled. This means that a C++ program might have different 

behaviour when compiled for different platforms because the ranges of the primitive types are not consistent across the 

platforms. For example an ‘int’ in Java behaves as a signed 32-bit two's complement number, a ‘float’ is the 32-bit IEEE 754 

floating point standard and no depend on underlying platform.  This consistency is also reflected in the internals of the 

Java virtual machine, which has primitive data types that match those of the language. It’s guarantee that primitive types 

behave the same on all platforms, the Java language itself promotes the platform independence of Java programs [71]. 
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The Java virtual machine [72] is a component of the Java technology responsible for hardware and operating system 

independence. The Java virtual machine is an abstract computing machine which has an instruction set and use  various 

memory resources during execution. JVM work on binary files. File with extension .class, which is a compiled Java program 

to bytecode, is an input for JVM. The class file itself is a binary file that cannot be understood by a human. Binary machine 

code is an output for the platform that the proceeding JVM was prepared. Please see an example of Java code and bytecode 

in Table 4.1. Java bytecode is platform-independent code. It is executable on the hardware where the JVM has been 

installed. The size of the compiled code (output from ‘Javac’) is of a similar size to the source code. It’s make easy to 

transfer and execute the compiled code via the network [71]. 

Java program Java bytecode and mnemonics 

class Test { 
 
    public static void doSth() { 
        int i = 0; 
        for (;;) { 
            i += 1; 
            i *= 2; 
        } 
    } 
} 

   0   iconst_0        // 03 
   1   istore_0        // 3b 
   2   iinc 0, 1         // 84 00 01 
   5   iload_0         // 1a 
   6   iconst_2       // 05 
   7   imul              // 68 
   8   istore_0       // 3b 
   9   goto 2          // a7 ff f9 

Table 4.1: Java code and bytecode example [71] 

The role of the JVM is illustrated on Figure 4.15, The class loader subsystem is a mechanism for loading types (classes and 

interfaces) given fully qualified names. The class loader subsystem is responsible for more than just locating and importing 

the binary data for classes. It must also verify the correctness of imported classes, allocate and initialize memory for class 

variables, and assist in the resolution of symbolic references. Each Java virtual machine also has an execution engine, a 

mechanism responsible for executing the instructions contained in the methods of loaded classes. The behavior of the 

execution engine is defined in terms of an instruction set. For each instruction, the specification describes in detail what 

an implementation should do when it encounters the instruction. There is no specification for the implementation of JVM 

execution engines. The implementations can interpret, just-in-time compile, execute natively in silicon, use a combination 

of these, or use some other new technique. Concrete implementations may use a variety of techniques, are either 

software, hardware, or a combination of both. A runtime instance of an execution engine is a thread. When a Java virtual 

machine runs a program, it needs memory to store the bytecodes and other information it extracted from loaded class 

files, objects, parameters to methods, return values and local variables. The Java virtual machine organizes the memory to 

execute a program into several runtime data areas [71]. 
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Figure 4.15: View of Java Virtual Machine 

The JIT compiler (see Figure 4.16) converts the bytecode to native code that is executed directly by Operating System and 

optimizes it. An adaptive optimizing virtual machine begins by interpreting all code and monitors the execution of that 

code. Most programs spend up to 80 percent of their executing time in 20 percent of the code [70], [71]. This kind of code 

is called program’s “hot spot”. By monitoring the program execution, the virtual machine can figure out which methods 

represent the program's "hot spot" [73]. JIT compiler in JVM compiles most frequently used parts of bytecode to native 

code upon first execution, then during re-calls of “hot spot” bytecode JVM executes it from the native code [71]. 

A JIT compiler takes more time to compile the code than the interpreter to interpret the code as it runs. Therefore, if the 

code is to be executed just once, it is better to interpret it instead of compiling. The JVMs that use the JIT compiler internally 

check how frequently the method is executed and compile the method only when the frequency is higher than a certain 

level [74]. JIT use intermediate representation of bytecode and usually optimize it before native code will be generated, 

see Figure 4.16. 

 

Figure 4.16: Compilation Just In Time blocks 

JIT does optimization through the following mechanism [74]: 
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 Inline methods - instead of calling method on an instance of the object it copies the method to caller code.  

 Replace interface with direct method calls for method implemented only once to eliminate calling of virtual 

functions overhead 

 Join adjacent synchronized blocks on the same object 

 Eliminate dead code 

 Drop memory write for non-volatile variables 

 Remove pre-checking NullPointerException and IndexOutOfBoundsException 

4.6 PacketC 

The packetC language [75] was developed by CloudShield Technologies, Inc. [76], in partnership with multiple partners 

worldwide including the US government, federal system integrators, telecommunication system providers and 

independent software vendors. The language is open for the implementation on numerous platforms in order to develop 

a common standard for developing network application. PacketC ensures high-performance parallel processing, secure 

code, network-centric processing and is designed to be used with a runtime environment that provides parallel processing 

[75], [77]. 

PacketC has been designed to maximize application reliability and security through object-oriented features, improved 

error handling, and strict typing. This language uses the C99 variant of the C language [67] for operators (arithmetic, logical 

and bitwise), conditional statements and overall syntax. The grammar of the packet language is similar to C and deviates 

only when is relevant to the specific problem domain. A simple example of packetC code to deny pings on a network is 

presented in Figure 4.17. 

packet module DENY_PING; 

#include <cloudshield.ph> 

void main($PIB pib) 

{ 

if ( pib.l3Type == L3TYPE_IPV4 && pib.l4Type == L4TYPE_ICMP ) 

    pib.action = DROP_PACKET; 

} 

Figure 4.17: Deny pings in packetC language [75] 

PacketC frees network application developers from the mechanics of managing parallel processes. Also abstracting the 

details of specialized devices increases the resulting applications’ portability [78]. The relationship between the parallel 

Packet Processing model, the packetC language and hardware platforms is depicted on Figure 4.18. 

The packetC language is designed to be compiled into optimized bytecodes that are executed by a packetC native 

processor (e.g. Cloudshield's DPPM processors [76]) or by an appropriate Virtual Machine (VM) [77]. A bytecode output 

for the packetC virtual machine allows for heterogeneous hardware platforms to execute the code in a predictable manner. 

The approach employed by the packetC system follows the approach familiar to Java p-code. The virtual machine is like a 
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lightweight bytecode virtualization layer found in emulated embedded systems or Java programs. The bytecode 

representation can employ the specialized instruction required and leave the implementation to packetC native processor 

or a virtual machine providing an equivalent implementation. The packetC code is assumed to be executed in a runtime 

environment that either provides or emulates: 

 Arithmetic and logical operations for unsigned integer with sizes of 8, 16, 32 and 64 bits, 

 Structures in which the fields that are declared first are stored at lower addresses, 

 Multiple-byte integers stored in big endian order with the most significant byte stored in the lowest number 

addresses, 

 Little-endian bit fields with bytes stored in big-endian order, 

 Management of packet receipt, buffering and transmission, 

 Basic packet structure interpretation and underlying functions for IP packet cleanup, 

Fundamental primitives for structured and unstructured content analysis to support database and search set expectations. 

 

Figure 4.18: Relationships: among the parallel processing model, packetC language, hardware platform 

The elements mentioned above may be provided by a hardware platform, operating system, packetC virtual machine 

environment or the compiler itself. The packetC system provides these capabilities such that code does not change from 

one platform to another. 

The language proposed by Duncan and Jungck lets users develop parallel networking applications by writing a single short 

program rather than a collection of low-level tasks. PacketC adds the following data type extensions [79]: 

 Descriptors – struct that describes a network protocol and is mapped to whatever location within a packet that 

contains that protocol structure, 

 Databases – structure aggregates divided into data and mask for matching against packet content, 

 Searchsets – aggregates of strings or regular expressions to match against packet content, 

 References – provide capability for chaining together successive databases and searchsets operations that are 

contingent on a previous operation’s result. 
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These data types and operations on them can be implemented by general-purpose or specialized processors. Figure 4.19 

shows how to use virtual machine to isolate processor specifics. A high-level packetC source code is translated by a 

compiler tool-chain into a virtual machine bytecode that is an intermediate representation. After that operation, 

interpreters transform bytecode into chip-specific commands for variety of processors. This approach allows developers 

to focus on network matters rather than machine details so knowledge of what processors types are in the system is 

required only of the interpreter implementers [79]. 

 

Figure 4.19: Using interpreted virtual machine instructions to hide and isolate machine control for heterogeneous 

processors [79] 

4.7 Conclusions 

As presented above Intermediate Representation Language (IRL) is a form of language used by an abstraction layer to 

generate a machine code for the target hardware. The IRL consists of platform-independent instruction sets that lies 

between high-level and low-level program languages. In a computer science domain intermediate representation 

languages provide a portability of code between different hardware architectures.  

An abstracted view of datapath entities towards the control plane is used by the OpenFlow protocol to control the behavior 

of network elements. A common data model of the device hides the complexity of internal structures of data processing 

entities. In OpenFlow such device abstraction is provided by flow tables and actions (pipeline in OF above v.1.2). The IRL, 

as described above, hides the complexity of underlying hardware in a similar way. The IRL with its abstracted machine 

ensures that a common language (e.g. bytecode in Java) is transferred into the hardware specific machine code. The IRL 

can be supported then on any device that implements the abstraction layer.  
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The analogy of the IRL’s abstraction data model and the OpenFlow protocol abstraction could be used during the Hardware 

Abstraction Layer (HAL) design. The OpenFlow device abstraction can be used as a common abstraction for alien hardware 

and a base for the HAL design.  
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5 Network Virtualization 

5.1 Definition of Network Virtualization and Existing Approaches 

Although the concept of virtualizing networks has been in IT literature for many years and it has been used in the industry, 

recently the shortcomings of the current Internet architecture to support new protocols and services has focused 

significant attention on network virtualization (NV) as a solution to this problem. While network virtualization can be seen 

as a tool to evaluate new network architectures, it can also be seen as one of the fundamental attributes of future Internet. 

In any case, network virtualization has been the first choice to test any new network technology and architecture before 

making it available for public. This has led network virtualization to be seen as a breakthrough in networking [80]. 

A definition of network virtualization which could encompass conventional and unconventional virtual networks is [81]: 

“Network Virtualization is any form of partitioning or combining a set of network resources, and presenting (abstracting) it 

to users such that each user, through its set of the partitioned or combined resources has a unique, separate view of the 

network. Resources can be fundamental (nodes, links) or derived (topologies), and can be virtualized recursively. Node and 

link virtualization involve resource partition/combination/abstraction; and topology virtualization involves new address 

(another fundamental resource we have identified) spaces.” 

While network virtualization is still evolving, and there are many projects in research communities around the world 

investigating new NV mechanisms, Software Defined Networking has recently gained a lot of attention. Several commercial 

SDN products are available to introduce network virtualization. To draw a better picture, the next sections will review 

conventional approaches in academia and SDN approaches in industry toward network virtualization. 

5.1.1 Academic Oriented 

As the Internet received huge interest and gained rapid growth in thirty years, new services have been added to it over the 

time which has led it to be a complex architecture to manage and maintain. All these new services have been designed on 

top the TCP/IP protocol suite which has not been designed to serve these services when it was created. In the networking 

community many have debated whether the current state of the Internet is about to be ossified and it is facing serious 

challenges in terms of scalability and security and network virtualization could therefore be a natural solution to deploy 

testbeds as virtualized infrastructure to investigate and overcome Internet obstacles [80], [82]. 
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Among recent existing major activities and research projects, European projects (OFELIA, GEYSERS, NOVI, MANTICORE, 

FEDERICA) and the US project VINI consider addressing network infrastructure virtualization at a national and/or 

international level with National Research and Education Network (NREN) connectivity in some of them.  

In the following sections, a brief review is provided to give a general idea of conventional approaches towards network 

virtualization in research communities. While it might seem that all projects have similar aims and objectives at first glance, 

the following points could give one a basis to evaluate and differentiate these projects in virtualization context: 

 architecture overview, 

 industry oriented. 

5.1.1.1 Architecture Overview 

FEDERICA [83]: dedicated “slices” of network infrastructure are provided which can be used simultaneously by different 

group with various control granularities and no disruption. These slices are created by a unique combination of 

virtualization techniques and network control mechanisms. Each slice gives the ability to run virtual overlay networks (L2 

and L3) down to the lowest possible network layer. Slices, as part of the FEDERICA infrastructure, are built on top of existing 

NREN networks. By building each slice, a set of virtual nodes, e.g., switches, routers and machines are implemented in the 

FEDERICA infrastructure and interconnected by virtual Ethernet links. The slice could be accessed either directly or via a 

gateway through the Internet [84]. 

MANTICORE [85]: Following the infrastructure as a service (IaaS) paradigm, MANTYCORE enables NRENs and other e-

infrastructure providers to represent their infrastructure resources (routers, switches, optical devices and IP networks) as 

a service to virtual research groups. It offers remote access and control of infrastructure resources to clients via web 

services. A marketplace represents all the resources and services between providers and customers in a unified virtual 

resource pool platform which facilitates network resources and features advertisement [86]. 

GEYSERS [87]: The aim of this project is to define and implement a new photonic network architecture with the capability 

of optical network and IT resource provisioning for network operators which will deliver end-to-end services. It adopts the 

IaaS and service-oriented concepts to enable infrastructure provisioning flexibility while at the same time separates the 

functional aspects of every entity involved in the converged service provisioning by enabling a layer-based structure in its 

architecture. Following the layered architecture, the Network Control Plane (NCP) layer is responsible for dynamic network 

connectivity provisioning and also control/management of the logical network infrastructure. Logical Infrastructure 

Composition Layer (LICL) partitions the physical infrastructure and Service Middleware Layer in an intermediate layer 

between client’s applications and NCP offering converged services [88]. 

NOVI [89]: Resources belonging to various levels, i.e. networking, storage and processing are in principle managed by 

separate yet interworking providers. NOVI will concentrate on methods, algorithms and information systems that will 

enable users to work within enriched isolated slices, baskets of virtualised resources and services provided by federated 

infrastructures. It will investigate federation data, control, monitoring and provisioning planes of constituent FI 

infrastructures. NOVI proposes and tests resource description data models and abstraction algorithms, incorporating 

Semantic Web concepts in order to give the user the ability to efficiently identify and correlate virtual resources. NOVI has 

Control and Management plans which offer an API to present control and management services. By providing an API for 
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control and management, NOVI will try to enhance federation approaches to facilitate slice control and management 

within federation of heterogeneous virtualized infrastructure [90]. 

GENI [91]: It provides an environment for investigating and evaluating new network architectures and protocols. In 

overview, it consists of three levels: a physical substrate which represents GENI’s physical resources (routers, links and 

switches), user services which represents the services available for users for their experiments and the GENI Management 

Core (GMC) which is a framework to bind user services with underlying physical infrastructure.  

VINI [92]: project VINI creates a virtual network infrastructure allowing researchers to deploy and evaluate their protocols 

and services in its test-bed. VINI is associated with PlanetLab network and adds layer 2 virtual networks to PlanetLab slices 

which means each virtual machine in PlanetLab is connected with Ethernet point-to-point virtual links. Leveraging from 

real routing software, traffic loads and network events, researchers have the ability to design and implement their 

experiments on a shared physical infrastructure provided by VINI project [93]. 

A taxonomy of network virtualization mechanisms is presented in Table 5.1. 

 Layer 3 virtualization Layer 2 virtualization Layer 1 virtualization 

FEDERICA By leveraging Juno’s 
virtualization in L2/L3 switches 
and software router [84] 

By leveraging Juno’s 
virtualization in L2/L3 
switches and VMware ESXi 
virtual switches [84] 

Not supported 

MANTICORE By means of Web Services it 
provides an IP interface for 
every user [86] 

By means of Web Services it 
provides an interface for L2 
[86] 

Not supported 

GEYSERS Not supported Not supported By creating an abstraction of 
heterogeneous network resources, a 
virtual optical node is created which 
could be either a partition of a single 
optical node or aggregation of 
multiple nodes [88] 

GENI By implementing Packet System 
Processing (PPS) in 
Programmable Core Node 
(PCN) which includes a high-
speed programmable device 
supporting multiple virtual 
routers [91] 

By implementing Circuit 
Processing System (CPS) in 
PCN containing collection of 
circuit-oriented components 
[91] 

By implementing Circuit Processing 
System (CPS) in PCN containing 
collection of circuit-oriented 
components [91] 

VINI By using vNet software module 
which creates a form of raw IP 
with isolated traffic for each 
slice [93] 

By emulation of L2 
functionality over IP [93] 

Not supported 

NOVI By implementing NSwitch in 
each domain. The NSwitch is 
developed by NOVI [94] 

By implementing NSwitch in 
each domain. The NSwitch is 
developed by NOVI [94] 

Not supported 

Table 5.1: Taxonomy of network virtualization mechanisms 
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5.1.1.2 Industry Oriented 

Although there are many commercial approaches and technologies to create virtual networks, we review here those 

approaches which are related to Software Defined Networking. 

Cloud computing is an emerging IT trend that brings several benefits such as reduced run time and response time, 

minimized risk of deploying physical infrastructure and increased pace of innovation. Although network virtualization has 

been used in cloud computing, it could not keep pace of innovation as fast as compute and storage virtualization and still 

remains as a barrier for more innovation in cloud computing services [95]. 

In a cloud data centre where thousands of Virtual Machines (VM) communicate at layer 2, VLAN tagging is used to create 

logical segmentations and virtual networks. However, this approach is not scalable because of limitation in maximum 

number of VLAN tags (only 4094). It also leads to cloud infrastructure segmentation when it is expanded between several 

remote locations. To overcome this impasse a solution is to have an overlay layer 2 (L2) network on layer 3 (L3) network 

to prevent logical L2 segmentation [96]. 

In order to address these issues and make virtual networks more flexible and easier for administration and maintenance, 

a few network protocols such as STT [97], VXLAN [98] and VNGRE [95] have been introduced to facilitate overlay L2 on L3 

networks and have been used in commercial products. 

Nicira’s [99] approach toward network virtualization in data centre is to decouple network services from underlying 

physical network hardware, as happens in server virtualization, which provides an environment for creation of agile, virtual 

networks [100]. Stateless Transport Tunnelling Protocol for network virtualization (STT) was introduced by Nicira Inc. STT 

in its core was designed to provide all the high performance feature that is available in the NIC in tunnelling mode, while 

keeping the flexibility of software for network virtualization function [97]. 

Another Software Defined Networking approach was introduced by Big Switch [25]. Inspired by OpenFlow, Big Switch has 

produced its own product, Big Network Controller. This controller resides on top of both OpenFlow hypervisor switches 

and physical switches and provides a unified abstraction of underlying network represented by an API. This API gives the 

ability to dynamically and automatically control the network and supports any data centre network protocol [26]. 

Vyatta [101] pursues another approach by creating SDN compatible virtual routers, firewall and VPNs to connect remote 

L2 SDN networks to each other. These virtual entities can be operated as virtual machines and could be replicated and 

located where needed. This will give flexibility to the users to provision, control and maintain their virtual network [102]. 

Midokura [103] is another company which has different vision of virtual networks and SDN in the cloud. Using the Open 

vSwitch kernel module, Midokura creates a distributed packet processing engine with L2-L4 forwarding capability. By 

running an agent as a control plane on each virtual network configuration, the flow state is built on the local control plane 

and since it can process packets, load balancing and firewall policies can be deployed without forwarding the packet to 

another machine. 



Report on Hardware abstraction models   

 

Project: ALIEN (Grant Agr. No. 317880) 
Deliverable Number: D2.1 
Date of Issue: 04/10/2013 

 

63 

5.2 Network Virtualization in OpenFlow Networks 

5.2.1 FlowVisor-Based 

5.2.1.1 FlowVisor  

At present, FlowVisor [104] is the most popular SDN based implementation to instantiate virtual networks. FlowVisor is a 

special purpose OpenFlow controller which acts as a virtualization layer between the OpenFlow-enabled switches and 

multiple controllers. In the network architecture, FlowVisor is placed between the OpenFlow network and the controllers 

acting as a transparent proxy (see Figure 5.1). With this approach, FlowVisor “slices” the OpenFlow network by intercepting 

all the OpenFlow-protocol messages sent by the switches to the controllers and forwarding them to the correct controller 

accordingly to pre-defined policies (this process is called network slicing). FlowVisor allows the configuration of several 

logical topologies (also called slices) which links and nodes are a subset of the physical topology. FlowVisor generally hosts 

multiple guest controllers, one controller per slice (see Figure 5.1) and it ensures that a controller can observe and control 

its own slice only, while isolating one slice from another. 

 

Figure 5.1: FlowVisor is logically placed between the physical network and the slice controllers 

As stated above, FlowVisor logically sits between the physical network and the controllers and intercepts all the messages 

exchanged between switches and controllers through the control channel. These messages contain a structure with fields 

which include (among others): in port (port of the switch on which the packet was received) and 128 bytes of the flow 

header. 

FlowVisor intercepts these messages and sends them to the correct controller on the basis of predefined policies. These 

policies are defined by using the headers of flows, the switch identifier (also called datapath_id) and the input port. 

For instance, a slice can be defined as the set of OpenFlow messages coming from specified subsets of switches and 

containing flow headers with destination and source ip addresses belonging to the subnet 192.168.0.0/24. 

Although a switch can belong to multiple slices, each slice only has control over its own flows. When a controller tries to 

control flows outside its flowspace, FlowVisor can either modify the control message or simply reject that message. 
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Figure 5.2: FlowVisor workflow [80] 

Figure 5.2 depicts the workflow for messages going from a controller to an OpenFlow switch and from a switch to a 

controller. In step (1) of the figure, the message is intercepted by FlowVisor which, accordingly to the user’s policies (2), 

rewrites or rejects the message and finally sends it to the switch (3). Messages from switches (4) are only forwarded to the 

controller with the matching slice policies. 

Along with the flowspace isolation mentioned above (achieved by rewriting the rules in the messages), FlowVisor also 

provides bandwidth isolation among slices by marking the VLAN priority bits of the flow headers.  

Furthermore, FlowVisor only proxies connections to a controller for switches that are included in the virtual topology of 

the controller and rewrites messages of these connections to only report to the controller the switch ports included in the 

virtual topology. 

FlowVisor also limits the number of flow entries that a slice can install on the network and ensures that the limit is never 

exceeded.  

 

Figure 5.3: FlowVisor can recursively alice a virtual slice [80] 
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Another interesting feature of FlowVisor is its ability to recursively slice a virtual slice (see Figure 5.3). For instance, all the 

messages containing flow headers with source and destination IP address of subnet 192.168.0.0/24 are sent from 

FlowVisor 1 to FlowVisor 2 (see Figure 5.3). Then FlowVisor 2 could send the subset of messages with TCP destination port 

80 to the Bob’s NOX controller while all the other messages to the Cathy’s controller. 

FlowVisor has been successfully applied as a Network Virtualization layer in several wired and wireless scenarios. FlowVisor 

has been applied using different network technologies in several different deployment experiments including: GENI [91] 

and OFELIA [105]. 

5.2.1.2 Optical FlowVisor 

Combining optical network virtualization technologies and SDN enables service providers to efficiently and dynamically 

reconfigure their network and support new services on demand with less manual intervention, hardware deployment and 

configuration. Inspired by the FlowVisor architecture, an OpenFlow-based packet switching over optical network 

convergence providing network virtualization (Optical FlowVisor) has been proposed.  

 

Figure 5.4: The architecture of Optical FlowVisor [106] 

A virtual optical network (VON) consists of set of virtual optical switches interconnected by virtual optical links. The 

proposed architecture has the following elements: a) an optical physical infrastructure, b) Optical FlowVisor (OFV) which 

is an access proxy between virtual networks and the physical infrastructure, c) vNet constructor responsible for both 
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configuring virtual network and corresponding extended OpenFlow controller, d) extended OpenFlow control layer 

responsible for controlling virtual network. 

The OFV user interface handles requests received by network operators which specify virtual network topologies and 

generates VONs utilizing available physical resources. Inside OFV, Optical Connection Controller provides access to VON to 

the physical infrastructure and controls cross connections in the optical switched network. 

OVF’s output is a VON description which is handed to the vNet constructor to create and configure the virtual network and 

the corresponding extended OpenFlow controller [106]. 

5.2.1.3 VeRTIGO 

As highlighted by the authors in [107], one of the major limitations of FlowVisor is the inability to establish virtual 

topologies completely independent from the underpinning physical topology. As a consequence, FlowVisor is unable to 

provide researchers flexibility in designing their experiments with arbitrary network topologies on a defined physical 

infrastructure. 

VeRTIGO [108], a software architecture built on top of FlowVisor, provides the functionalities to overcome the above-

mentioned FlowVisor’s limitation by allowing the instantiation of generalized virtual topologies in an OpenFlow network 

through the implementation of virtual links as aggregation of multiple physical links and OpenFlow-enabled switches. 

 

Figure 5.5: VT1 is an example of FlowVisor's slice while VT2 is an example of VeRTIGO's virtual topology 

Like FlowVisor, VeRTIGO sits between the physical hardware and the guest OpenFlow controllers and enables the 

implementation of virtual topologies (see the VT2 example in Figure 5.5). Unlike FlowVisor, VeRTIGO directly controls part 

of the OpenFlow network with the purpose of enabling the definition of logical topologies completely decoupled from the 

underlying physical network. 

VeRTIGO’s capability to provide virtual instances of the physical network is grounded on two basic virtual elements: Virtual 

Links and Virtual Ports. These two elements are used to instantiate arbitrary network topologies including virtual links 

between not adjacent switches which are exposed to the OpenFlow controller as part of the network. 

Virtual topologies instantiated through VeRTIGO are used to either simplify or deeply customize the topology of the 

network overcoming the physical constraints. 

This customization can be useful for researchers willing to test their new protocols on a particular configuration of the 

network. VeRTIGO could also reduce the complexity of the network allowing the network administrator of a company to 

configure only the nodes at the edges of his/her network. 
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VeRTIGO is under development stage within the OFELIA European project  and aims at offering an advanced network 

virtualization framework for the OpenFlow islands of the OFELIA facility. 

5.2.2 FlowVisor-Less 

Even though FlowVisor is considered the most usual tool to introduce a Network Virtualization layer into an OpenFlow 

network, several authors have recently proposed alternative approaches (and therefore to extensions as discussed in the 

previous section). The virtual architectures implied by FlowVisor have some known limitations, among them: 

 When scaling to hundred or more controllers, FlowVisor could potentially experience some scalability issues (but 

in their original paper, FlowVisor’s authors have implied it could scale to thousand of controllers by postulating 

FlowVisor’s CPU and bandwidth consumption scale linearly with the number of controllers); furthermore 

FlowVisor is, itself a single point of failure. 

 FlowVisor’ slices are not allowed to modify the configuration of switches. This could be an interesting feature to 

enable virtualization in the wireless domain. 

 Giving that FlowVisor is inherently bound to a single version of the OF protocol, it is not able to handle network 

scenarios where switches and controllers based on different versions of the OF protocol are running; 

 Adding functional extensions to network switches (either OAM functionalities, novel forwarding mechanisms, 

pseudowires or a new matching structure) is difficult; FlowVisor is in fact bounded to the OpenFlow protocol 

version, therefore for every OF protocol update, FlowVisor has to be also updated. 

 The global flowspace must be divided logically among all the network slices. Therefore there’s no way for two 

FlowVisor’ slices to share flowspace and simultaneously prevent them from interfering with each other’s traffic.  

 FlowVisor works as a hypervisor into the management plane; therefore it requires placing trust in a large and 

potentially buggy software code. 

 FlowVisor do not provide a way to do not provide methods to verify in a formal way that a certain network has 

the required isolation properties. 

While some of these limitations can be addressed by proper extensions of FlowVisor itself, others cannot be overcome 

since they are strictly related to the architectural properties of FlowVisor. Recently, some authors have been proposing 

alternative approaches to virtualize OpenFlow networks. 

In [109] authors propose an “integrated OpenFlow virtualization framework” able not only to handle multiple instances of 

OpenFlow switches (with different forwarding capabilities and OpenFlow versions), but also to run and configure 

controllers designed for managing a virtual network and properly handle QoS in the network. A key point (and a constraint) 

of the proposed architecture is the availability of data plane elements with virtualization capabilities, i.e. elements which 

are able to run multiple instances (and versions) of OpenFlow switches together with a logic mapping the physical 

interfaces of the switches to the virtual ones. In particular, the proposed framework implements management and control 

functions for managing these virtual switches, by instantiating them, by starting/suspending or stopping them, by assigning 

physical ports to the virtual ones, etc. Furthermore, the framework maintains the topology of the managed virtual network, 
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e.g. by reconfiguring the physical-to-virtual port assignment in case of a physical failure. The authors claims that FlowVisor 

can be easily managed through the proposed framework. 

In [110] the authors takes a slightly different approach, by emphasizing what is really important when performing network 

slicing: traffic isolation among network users. While several approaches to perform such isolation have been proposed all 

over the years, from VLAN to firewalls up to FlowVisor (when dealing with OF networks), none of the proposed mechanisms 

is completely satisfactory. The authors claims that instead of relying on low-level mechanisms (like VLANs), middle-boxes 

(like firewalls) or complicated hypervisors (like FlowVisor), when it comes to Software Defined Networking, languages for 

programming networks should be “equipped with intuitive and composable constructs” to be leveraged when some 

isolation properties (including traffic, physical and control isolation) must be guaranteed. This method has in fact several 

advantages over all the existing mechanisms and, moreover, it provides a way to formally verify that a network has the 

needed isolation properties. In short, instead of proposing a new mechanism, the authors propose to move researchers 

attention from the mechanism itself to the implementation of a compiler for programs running on the controllers which 

should simplify programmers life through a set of simplified commands while leaving the effective implementation of the 

isolation to some of the existing mechanisms, somehow keeping their implementation complexities to a compiler that can 

properly interpret those commands and translate them into switch configurations. 

In [111] the authors propose a novel OpenFlow virtualization mechanism with highly scalable multitenancy. Compared to 

existing mechanisms (FlowVisor and VeRTIGO), the flow space is not globally distributed among tenants but each tenants 

can handle any flow space values freely thanks to a flow and packet-header translation mechanism. One of the key points 

of the proposed architecture is the need for an Open vSwitch instance to be used as packet header translator on the 

host/VM side. While this is widely available on Linux machines, it is not on other OS-based ones. So, while the proposed 

framework could work well in a purely experimental scenario where all the hosts are controlled and can be standardized, 

in other application scenario this can be a severe constraint since a NV framework should be independent from the hosts 

architecture. It is also not clear how much this scenario can scale especially when dealing with hundreds or thousands of 

nodes and hosts. 

5.3 Conclusions 

Despite the significant breakthrough in virtualization technologies in IT, virtualization in data network is still a bottleneck 

in terms of performance and management. Part of the problem is that network resources are distributed in different 

locations in a logical network topology which makes them difficult to control and manage in an efficient and centrally 

controlled way. Software Defined Networking by dissecting the control plane from data plane on each network device and 

placing it on a central box, promises to tackle current network obstacles and among them network virtualization. Although 

SDN in its concepts tries to provide programmability and flexibility by abstracting the data plane, it does not address the 

network virtualization problems directly. Previous researches and projects about network virtualization have tried to 

investigate all aspects of the problem with different approaches to realize pros and cons of each solution. Having said that, 

in ALIEN Project a network virtualization solution that meets the SDN requirements with regards to previous and current 

network virtualization approaches will be provided.  
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6 OFELIA 

6.1 Overall Information 

OFELIA [105] is a collaborative project funded by the 7th EU Framework Project (ICT Work Programme), “OpenFlow in 

Europe: Linking Infrastructure and Applications”. It is a 3 year project, from October 2010 to September 2013, with a total 

cost of 6.3M€ (4.45 million Euros funding from European Commission). 

The increasing complexity of the current Internet has shown the inherent limitations of its architectural design. Different 

research initiatives, such as Future Internet in Europe and Clean Slate Design in USA, have done significant efforts to 

overcome these limitations. In order to test novel research proposals from these initiatives at scale, an appropriate 

experimental facility is required. According to this, OFELIA cooperates with international research initiatives such as GENI 

in USA and AKARI project in Japan. 

The main objective of the project is to create the first OpenFlow based experimental facility at Europe. The facility allows 

researchers not only to experiment by using the network but to control the network itself. The researchers have the ability 

to extend/modify the network in a dynamic way by adding or removing resources. OpenFlow supports the virtualization 

and delegation of the network’s control plane through a secure and standard interface (i.e. the OpenFlow protocol). 

Initially, there were ten partners including operators, vendors and research institutions, and five interconnected islands 

based on OpenFlow technology. This OpenFlow infrastructure provides a unique facility to experiment on multi-layer and 

multi-technology networks. By means of two Open Calls, the number of partners and interconnected islands has increased. 

Two additional partners were added after the first Open Call (deadline March 30th, 2011) and five extra partners after the 

second one (deadline April 18th, 2011). Nowadays, OFELIA consists of 10 OpenFlow-enabled islands at academic 

institutions. However, all of them are not yet fully deployed or operational for testing. 

Currently, the project consortium is composed of the following organizations: European Center for Information and 

Communication Technologies (EICT), Germany (coordinating partner); Deutsche Telekom Laboratories, Germany; 

University of Essex, UK (this is now transferring to the University of Bristol); i2CAT Foundation, Research and Innovation in 

the Internet Area, Spain; Technische Universität Berlin (TUB), Germany; NEC Europe Ltd, UK; Interdisciplinary Institute for 

Broadband Technology (IBBT), Belgium; Eidgenössische Technische Hochschule Zürich (ETH), Switzerland; The Board of 

Trustees of the Leland Stanford Junior University, USA; ADVA AG Optical Networking, Germany; Consorzio Nazionale 

Interuniversitario per le Telecomunicazioni (CNIT), Italy; Center for REsearch And Telecommunication Experimentation for 

NETworked communities (Create-Net), Italy; Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain; 
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Lancaster University, UK; Instituto de Telecomunicações Aveiro (ITAV), Portugal; University of São Paulo (USP), Brazil; 

Federal University of Uberlândia (UFU), Brazil. 

As previously mentioned, OFELIA has built the first OpenFlow switching testbed in Europe (there are large OpenFlow 

testbeds in USA and Japan), which is fundamental for Future Internet experimentation. However, several scientific 

challenges needed to be addressed during the project lifetime in order to provide the proper virtualization support for a 

large-scale and flexible scenario. The facility enables the testing of novel control and routing algorithms at scale, since 

there are poor support for experiments in legacy routers and switches. Therefore, OFELIA creates a real-world 

experimental networking substrate with several interesting characteristics. First of all, it allows the disclosure of a flexible 

control plane down to individual flows. It also provides a protocol agnostic facility and exposes the programmability of 

network resources in a scalable manner. Regarding the OpenFlow technology itself, OFELIA allows the deployment and 

testing of new controllers and control applications. 

The main objective of OFELIA is the creation of a research facility with the aforementioned characteristics. Consequently, 

there are three aspects to consider: virtualization, multi-domain and extensions to other technologies. The virtualization 

approach is based on FlowVisor, which enforces the isolation between slices and enables the delegation of the control 

plane to the researchers. It was improved by one of the projects accepted in the 1st Open Call, VeRTIGO (from CREATE-

NET), which adds support for logical topologies to FlowVisor. From the standpoint of the facility, the automatic 

creation/management of slices is mandatory for both FlowVisor and VeRTIGO. Regarding the multi-domain issue, some 

extensions to controllers are expected to achieve the federation of islands. Although there have been some efforts in the 

community, there are still several issues to solve. Since OFELIA was conceived as a facility for Future Internet proposals, 

the experimentation with optical and wireless technologies is expected. Finally, some OpenFlow extensions are needed to 

cope with multi-layer and multi-domain experiments. In this multi- scenario, any layer or domain borders require flow 

processing (extending the filter format description to generic labels) and additional developments are needed to interface 

these elements towards the controller. Moreover, non-IP experiments are also possible such as content-based addressing 

approaches. 

6.2 Facility and islands 

OFELIA was conceived to grow as a facility in three phases. One reason for this was the obligation to provide early access 

to the facility due to the FP7 call restrictions, no later than month 6. Another reason was the necessity to evolve the facility 

during the project lifetime. This evolution is a consequence of the requirement to incorporate the feedback of users and 

accommodate their needs. Additionally, the gradually extension of the facility to other locations and test facilities also 

caused this evolution. 

The first phase (March 2011) focused on the setup of islands. This first phase aimed to implement the first operative version 

in a short period of time and made the facility available for users in month 6. Initially, there were five islands located in 

different universities and research institutions in Europe: University of Essex (UK), TU Berlin, IBBT Gent, i2CAT Barcelona 

and ETH Zürich. In this phase, researchers accessing the OFELIA facility were provided with a network slice, which is 

basically formed of three different resources: (1) a set of network nodes with OpenFlow 1.0 support, which in most cases 

are slices of the flowspace of the physical NEC switches; (2) a virtual machine to run the OpenFlow controller, which 

controls the network resources; and (3) a set of virtual machines to act as end-hosts. The researchers were able to access 

the delegated virtual machines from the outside of the facility by means of SSH. 
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In this phase, the five islands were reachable through bridged OpenVPN connections between them. These 

interconnections were expected to be improved by installing dedicated GbE circuits in a later phase. From the outside, 

researchers needed to set up a routed OpenVPN connection to IBBT in order to interact with the facility and get access to 

their network slices. Then, IBBT became the central access point to the OFELIA facility. 

The second phase (March 2012) was oriented to improve the interconnection of the islands. As previously stated, one of 

the main concerns about the early setup of the facility is the lack of dedicated resources and limited performance of these 

interconnections. In this phase, the connectivity was improved to a minimum of 1Gbit/s Ethernet tunnels in star 

configuration. The central node of this topology was located at IBBT in Gent, which became the hub of OFELIA. Since the 

external access to the facility was centralized at IBBT, this election makes sense. 

The third and last phase focuses on the customization of the facility in order to support the OFELIA researches to deploy 

their innovative usage scenarios. The Open Call process invites new partners to the consortium and assigns dedicated 

funding to implement and deploy their new use cases over the facility. Concrete use cases arises new requirements that 

need to be addressed and new partners contribute to add this support to the OFELIA portfolio. 

In this final phase, the automated provisioning of OpenFlow slices across multiple islands needs to be available for 

researchers. Furthermore, the federation of OFELIA with other FIRE facilities is also expected. 

Currently, OFELIA is formed of ten OpenFlow-enabled islands at different academic institutions both in Europe and Brazil, 

which are: IBBT (Gent, Belgium), University of Bristol (Bristol, UK), ETH (Zurich, Switzerland), i2CAT (Barcelona, Spain), TUB 

(Berlin, Germany), Create-Net (Trento, Italy), CNIT (1 in Roma and 2 locations in Pisa, Italy), and UFU (Brazil). All islands can 

be seen in Figure 6.1. However, only six islands are currently available which are detailed in the following subsections. 

 

Figure 6.1: OFELIA facility and islands 

6.2.1 IBBT Island 

The IBBT testbed consists of two laboratories: Wilab and Virtual Wall. Both laboratories are available at OFELIA and focus 

on different technologies. 
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The Wilab (w-iLab.t) is an experimental wireless testbed deployed in the IBBT building, in which researchers are able to 

upload executables, associate them with wireless motes to create a job and schedule the job to be run on wilab. All the 

messages from each experiment are available for later processing by the corresponding researcher. Wilab enables research 

in sensor network programming, protocols and applications. There are 170 TMote Sky sensor motes deployed at IBBT. Each 

mote consists of: TI MSP430 processor 8Mhz, 10KB of RAM, 1Mbit of Flash, Chipcon CC2420 radio at 2.4GHz (indoor range 

100 m) and sensors for light, temperature and humidity. Nodes run the TinyOS operating system and NesC is used as 

programming language. 

The Virtual Wall (iLab.t) consists of 100 servers interconnected by a non-blocking Force10 switch. The infrastructure allows 

researchers to configure any network topologies adding enough flexibility to change completely the network behaviour 

and how the traffic is handled by each node. Each server has the following specification: dual CPU and dual core, 4GB RAM, 

4x 80GB HDD. There are 60x6 and 40x4 GbE experimental network interfaces interconnected by a Force10 E1200 switch 

with 576x Gb/s ports, 8x10Gb/s ports and 1.6 Tb/s backplane. If needed, links between network nodes can be shaped by 

restricting the bandwidth or adding some delay. Furthermore, researchers get root access to the nodes and are able to 

customize the OS images. However, a specific image has been created in advance for OFELIA with support for OpenFlow 

v1.0, which includes: OpenVSwitch v1.1.0, NOX controller v0.9.0 and credentials to get access to OFELIA. 

6.2.2 University of Essex Island 

The OFELIA research team from the University of Essex have changed their affiliation to University of Bristol, so the island 

is expected to be moved also to their new location in Bristol.  The island consists of four OpenFlow enabled switches (NEC 

IP8800/S3640-24T2XW) and two dedicated physical servers (Dell Power Edge 1950, Intel Xeon® Quad Core X5355 2.66GHz, 

8GB RAM and 400GB HDD). The virtual machines provided to researchers are based on XEN virtualization (XEN hypervisor 

on top of Debian 6) and automatically created by the OFELIA control framework. Moreover, there are four additional 

servers, which are part of the island infrastructure but not accessible by researchers: one for the OFELIA control framework; 

another one for the FlowVisor used to slice the resources; a third server to run a SNAC (controller for the administrator of 

the island); and a last server to run the OpenVPN that connects the island to IBBT hub. The island has a very good 

connectivity to GEANT and JANET (NREN from UK), and also to Brazil and USA via Internet2. Additionally, optical equipment 

(ADVA FSP 3000 Optical Add/Drop Multiplexers) is expected to be connected to the island. 

6.2.3 ETH Island 

The ETH Island is located in Zurich and hosted inside the Communication Systems Group. Basically, the island is formed of 

three OpenFlow enabled switches (NEC IP8800/S3640-24T2XW) and three 64-bit dedicated servers with Debian Squeeze 

and 36 GB of RAM. The switching topology is completely meshed. Regarding the servers, one of them is dedicated to 

OFELIA related issues, such as the control framework, FlowVisor and OpenVPN tunnel. The remaining two servers are 

devoted to host the virtual machines delegated to researchers based on XEN virtualization. Each VM has three network 

interfaces: the control interface (eth0), and two experimental interfaces (eth1 and eth2). 
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6.2.4 TUB Island 

This island is located in the Campus-Network at the Technical University of Berlin. Concerning the OpenFlow enabled 

switches, there are five switches (four NEC IP8800/S3640-48TW and one HP5400); however, only three of them are 

currently available at OFELIA. These three switches are connected in a full mesh topology. There are also two servers (E3-

1240 Quad Core with 16 GB RAM) running Debian Squeeze for the virtual machines delegated to researchers. Both servers 

are connected to the three switches (eth1, eth2 and eth3) and use an additional interface (eth4) for the control traffic. 

Additionally, an Ixia T400 traffic generator and performance analyser is connected to the infrastructure with eight port 

GBit interface cards. Finally, the OFELIA control framework and the OpenVPN gateway are hosted in another server, an 

IBM server with two Intel Xeon CPUs (Quad core) and 2.4 GHz. Therefore, the experimental traffic is bridged and tunnelled 

to other islands by means of a VPN. 

6.2.5 I2CAT Island 

The i2CAT island comprises eight OpenFlow enabled switches (five NEC IP8800/S3640-24T2XW and three HP E3500-48G-

PoE) in a full mesh topology; however, only the NEC devices are currently deployed and available through OFELIA. There 

are also five dedicated 64-bit servers (SuperMicro SYS-6010T-T) running Debian Squeeze with 12 GB of RAM. One of these 

servers hosts the OFELIA control framework, the FlowVisor to slice the network and the OpenVPN to connect the islands. 

The remaining four servers are used to host the virtual machines automatically delegated to end users by means of the 

control framework. The virtual machines are based on XEN server running over Debian. 

6.2.6 Create-Net Island 

The Create-Net Island deployed in Trento (Italy) is the first extension to the original OFELIA infrastructure which is currently 

up and running. Regarding the OpenFlow enabled switches, the island is formed of three NEC switches (NEC IP8800/S3640-

24T2XW), two HP switches (HP ProCurve 3500) and four NetFPGA cards. Concerning the server machines, there are two 

Dell PowerEdge (1850 32-bit with 8GB and 1750 32-bit with 5 GB) and three server-class PCs (Debian Squeeze, 64-bit, 16 

GB of RAM). The latter three servers are devoted to host the virtual machines of researches and are based on XEN Server, 

whereas one Dell server hosts the OFELIA control framework and the other Dell server hosts both the FlowVisor and 

VeRTIGO. Create-Net entered in the consortium in the 1st Open Call to deploy the support for logical topologies in OFELIA 

(i.e. VeRTIGO) and is the first island with this support. 

6.3 Control Framework 

The OFELIA Control Framework (OCF) [112] can be defined as the orchestration software for the OFELIA FP7 [105] facility. 

The main purpose of the framework is to arbitrate, automate and simplify experiment life-cycle within the facility. Original 

directives were taken from the ”OFELIA Basic Use Case” [113] and the experience of previous OpenFlow testbeds already 

running, like GENI [91] project.  

OFELIA embraced the Enterprise GENI (E-GENI) [114] control framework for its facility as a base over which a lot of new 

features and functionalities are added as per OFELIA’s requirements. The E-GENI control framework was based on SFA 
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(Slice-based Facility Architecture) [115]. SFA is a federation framework that defines a set of rules by which two or more 

experimental entities can be federated.  

The most used federation scenarios are:  

 Centralized: a single Clearinghouse manages all the underlying components of control framework across the 

experimental facilities. This type of federation is used e.g. in the Panlab [116] architecture.  

 Distributed: offers more flexibility and redundancy, because every Clearinghouse in every facility will have full 

access to the components in the lower layers of the control framework. The OCF is based on this type of 

federation. 

The OFELIA Control Framework fulfils a set of requirements defined in the “OFELIA Basic Use Cases”: 

 Resource allocation and instantiation: the OCF software supports resource allocation, instantiation and de-

allocation for generically any types of resource (e.g. an OpenFlow network slice or a virtual-machine). 

 Experiment/project based resource allocation: the resource allocation/de-allocation is made per project and 

slice (e.g. the smallest indivisible entity composed by the resources necessary to carry out an experiment). Slices 

are totally isolated from each other, even though they might share the same infrastructure substrate. The 

isolation among slices is fulfilled using a unique header field assigned for slicing purposes (currently VLAN ids). 

 Federation and island autonomy: the software architecture inherently supports internal (between OFELIA 

islands) and external federation with other testbeds. For this reason the OCF is based on a distributed scenario 

for managing the federation. 

 AA and policy framework: OCF supports mechanisms for authentication and authorization (in several scopes) 

along with a strong policy framework (also in several scopes or layers). 

 Usability: experimenters have access to comprehensive and easy to use user interface(s). In this sense, the main 

focus of the development has been towards a web-based user interface. 

6.3.1 OCF Current Architecture 

The current architecture design of the OCF software, corresponding to a single testbed, is the one depicted in Figure 6.2(a). 

This architecture is influenced by the open-source software used to manage OpenFlow resources (Expedient and Opt-In). 

One of the main requirements of OFELIA was that users could access the physical resources (switches and virtual machines) 

since the very beginning of the project. As a first step, the internal board in charge of the implementation decided to use 

this standard software and to modify/extend it to match the requirements. Nevertheless, as part of the project work-plan 

and following an iterative approach, architecture has and is evolving along with the implementation, as it will be shown in 

section 6.3.2. However most of the fundamental concepts behind the evolved architecture are already present in the 

design. Figure 6.2(a) shows the basic structure of a single testbed software stack, composed fundamentally by two types 

of components and formally corresponding to two separate layers: 
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 Frontend layer: This layer encapsulates two functions: the user interface (web frontend) and the so-called 

Clearinghouse (GENI terminology). The Clearinghouse stores information about projects, slices and user state, 

and is in charge of user authentication and authorization. This component plays two main roles. On one hand, it 

deals with the management of users, projects and slices within each island. The Clearinghouse accesses the 

OFELIA LDAP for synchronizing user accounts and privileges among islands and provide a unified authentication 

framework (Single Sign In). On the other hand, it also acts as the AJAX-enabled web-based user interface. The 

communication with the aggregate managers below is performed by means of specific plugins developed in 

Python. Each plugin provides the means to communicate and translate the resource specific description provided 

by an Aggregate Manager (see next bullet). The Clearinghouse is based on Expedient, a module originally 

developed by Stanford University, but highly adapted and extended in areas like the experiment workflow and 

the Web UI. 

 Resource/Aggregate Managers (RM/AM) layer: This layer takes care of resource management, hence 

maintaining reservation state, performing resource allocation, setup, monitoring and de-allocation. Currently two 

AMs with the corresponding RMs are supported: 

o Virtual Machine Aggregate Manager: deals with the management of the virtualized servers provided by 

the OFELIA facility to host OFELIA user’s virtual machines. The current implementation supports XEN, 

although AM design and implementation is inherently hypervisor-agnostic. The VM AM handles the 

requests and takes care of the provisioning, instantiation and deinstantiation of VMs.  

o OpenFlow Aggregate Manager: is currently based on the Stanford’s tool Opt-in Manager. The main 

objective of this package is to control and administer the FlowVisor configuration, the tool in charge of 

slicing the OpenFlow network and multiplex concurrent usage (see Section 5). 

 

 
(a)       (b) 

Figure 6.2: OFELIA Control Framework Architectures for a single testbed: (a) current version v0.22, (b) future version v1.x 

Federation, not shown in the figure for simplicity, is accomplished by allowing higher layer component instances 

(Frontends) to connect to other testbeds RM/AMs, effectively allowing users to use resources across several testbeds. 

Obviously, a common slicing mechanism must be adopted between federated testbeds in order to assure the separation 

among users’ traffic.  
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Nevertheless, this architecture presents some limitations. First, the higher layer component (frontend) should be split into 

two logically separated modules, the User Interfaces (UIs, e.g. Web Graphical User Interface and Command Line Interface) 

and the Clearinghouse (CH), along with a formal definition of the interfaces among these components and the interaction 

with the AM/RM layer. 

The federation is achieved using at least two logical networks with different purposes: 

 Experimental network: interconnects the OpenFlow switches and Virtual  Machines (VMs) accessible for 

experimenting.  

 Control network: the facility contains some hardware to control and manage the facility. Besides the OFELIA 

specific services (Expedient, OpenFlow AM and VT AM, FlowVisor), also more generic services are provided, like 

an LDAP server for storing the credentials, DNS server, NFS server, etc. The purpose of this network is to 

interconnect these servers and the infrastructure under control, plus it gives the users access to their experiments 

(slices). 

6.3.2 OCF Software Architecture for Future Versions 

Figure 6.2(b) shows the planned evolution of the software architecture design, intended to be implemented starting from 

version 1.0 of the OCF on in order to overcome the limitations previously described. The architecture is highly influenced 

by other testbed projects such as GENI. The first release of OCF v1.0 is expected for September 2013, according to the 

implementation roadmap. 

In this new architecture there is a formal definition of three separate layers;  

 the User Interface layer 

 the ClearingHouse layer 

 the AM/RM layer 

Moreover, interactions and interfaces among these layers are formally defined. Federation is still taking place allowing 

user interface to interact with other testbeds’ AM/RM layers. The new architecture is based on the assumption that AMs 

and RMs may form a hierarchical chain, also due to the fact that they have an unique authorization and authentication 

frameworks and common APIs. This will be achieved since all the different AM/RMs will be based on the AMsoil [117], a 

software package framework that will act as the base toolset to build OFELIA AMs. It encapsulates common tasks which 

are performed by every AM/RM, such as Authentication & Authorization, interfaces such as the native OFELIA API, GENI 

API v3 or SFA wrapper and common AM/RM abstractions and mechanisms, like booking and monitoring logic. 

Both the first and the third layer will be substantially modified starting from OCF v1.0. In particular, the current OpenFlow 

AM (OptIn) will be replaced with an extended version of FOAM [118], that is actually the OF AM used in GENI. The OFELIA 

FOAM will be enhanced with the support of virtualization (VeRTIGO) [119], optical and wireless resources. Moreover, the 

UI level will be updated with a new version of the Graphical User Interface, that will support more generic resources, and 

with the inclusion of OMNI, the UI adopted by GENI. 
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The aggregation of AMs is something allowed by the architecture itself and may be implemented depending on the specific 

management requirements (resource aggregation). The architecture also defines that AM/RM component may implement 

policies locally according to the operational needs. 

6.4 Conclusions 

The OFELIA experimental facility is formed of ten OpenFlow-enabled islands at different academic institutions of both 

Europe and Brazil. The facility allows researchers not only to experiment by using the network but also to control the 

network itself. The researchers have the ability to extend/modify the network in a dynamic way by adding or removing 

resources. 

In OFELIA, the whole life-cycle of experiments is managed through the OFELIA Control Framework (OCF). The OCF is a 

framework which provides the experimenters a comprehensive and easy to use user interface for requesting network and 

computational resources. The OCF also relies on FlowVisor and VeRTIGO as OpenFlow resource managers and XEN as 

manager for the computational resources. 

Given the modular architecture of the OCF, the ALIEN hardware can be easily integrated into the OFELIA facility by 

implementing specific aggregate and resource managers and a plugin for the GUI of the OCF. The ALIEN project can 

leverage on the OCF to enable the OFELIA users/experimenters to use the ALIEN hardware through a single interface and 

hence, to conduct their experiments on a heterogeneous testbed composed of OpenFlow and non-OpenFlow capable 

hardware simultaneously. 
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7 Security Aspects 

This section discusses the state of the art in security as it applies to the ALIEN project. In specific it covers security aspects 

related to Software Defined Networking and intermediate representation languages. While there are some reasons to 

believe that software defined networks will help with security issues, however, there are some specific challenges which 

must be met. No comprehensive review paper yet seems to exist in the academic literature but high level overviews are 

given in articles such as [120] and from an enterprise network perspective [121]. While SDN in general does not specify a 

specific technology for the control plane, Open Flow is becoming increasingly widely spread and much of the discussion in 

this section is in the context of Open Flow as a control plane technology although many of the conclusions would be general 

to any controller which was equally or more flexible. 

7.1 Specific Security Aspects in SDN 

7.1.1 Isolation 

In a typical SDN situation, multiple tenants share virtualised slices of the network infrastructure. Hence, there is 

opportunity for lack of resource isolation leading to attacks between SDN tenants.  

This lack of isolation can manifest itself as a confidentiality risk (by e.g. enabling side channel attacks) or an availability risk 

(by e.g. resource starvation). In current virtual network implementations, isolation is applied at various levels and using 

different techniques. In the case of FlowVisor [107], OpenFlow is used to provide isolation at the control and forwarding 

level; other techniques are required for CPU isolation [122] and bandwidth isolation [123]. Whereas FlowVisor relies on 

running parallel OpenFlow instances to achieve its isolation properties, it is also possible to achieve this by compiling 

independent network slices into a single set of flow rules that implement them [110]. Although this provides performance 

and verifiability benefits, it can increase system complexity. 

Independently of how control and forwarding is achieved, current proposals rely on additional techniques for CPU and 

traffic load isolation. Hence, in order to protect tenants in SDN deployments from traffic injected into the shared network 

infrastructure, adequate support for traffic isolation must be deployed in the SDN-enabled network elements themselves. 

Failure of isolation can lead to potential attack vectors. For example, shared physical paths with insufficient isolation could 

allow users to deduce the nature of the traffic pattern of other users who share those physical paths even if they are 

isolated virtually. 
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7.1.2 Protecting the Controller 

One of the reasons why SDN is attractive is that it provides increased flexibility by centralising policy deployment. This has 

the effect, however, of turning the SDN controller into a single point of failure. In effect, any mechanism that achieves DoS 

on the controller can then be leveraged to DoS the entire network. In general terms, two kinds of attacks can be 

distinguished: attacks that target the controller directly, and attacks that target the control channel between the controller 

and SDN-enabled network elements [120]. 

7.1.2.1 Direct Attacks on the SDN Controller 

Since in many cases the controller has wide-ranging control capabilities over the network, its compromise or disabling 

could present an endless series of security threats. This means that SDN controllers must be both logically and physically 

secure, with robust authentication and authorization mechanisms. In addition, the software components of the controller 

must be robust, and hardened against privilege escalation and arbitrary execution threats by e.g. buffer overflow errors. 

Operationally, the controller must also be supported by secure procedures that correctly specify which users, processes 

and hardware platforms have what privileges over its hardware and software. Unnecessary services should be removed 

from the controller, and incoming connections to it should only be accepted if adequately authenticated. Finally, operating 

system security mechanisms such as digitally signed application installation and application executable fingerprinting 

should be in effect in the controller.  

7.1.2.2 Attacks on the SDN Control Channel 

The communications channel between the controller and the SDN-enabled network elements (NEs) can be used to perform 

attacks on both. Hence, this channel must be adequately secured. In OpenFlow 1.3.1 then the channel “is usually encrypted 

by TLS but may be run directly over TCP” and is from a “user-configurable (but otherwise fixed) IP address”. By requiring 

strong mutual authentication in these interactions, the risk for impersonation in both directions is mitigated. Furthermore, 

since communication failures between controllers and NEs could potentially disrupt the operation of the entire network, 

adequate capacity and survivability is required in order to ensure that the network remains operational even on high-load 

scenarios such as a DDoS attack or a flashcrowd. This has led to some network architectures relying on dedicated capacity 

for controller-NE traffic. However, if such a design is to be effective, the controller itself should be made resilient against 

excessive application load. This makes the deployment of the controller as part of a cluster or elastic cloud infrastructure 

particularly attractive, as long as adequate fail-over mechanisms are present between the controller and its standby 

counterparts. 

7.1.3 Dynamic Traffic Policies 

In an SDN-enabled network, traffic policies can be updated in near-real-time simply by effecting the corresponding changes 

in the controller. This means that SDN tenants may not have any assurance, a priori, of the treatment that a particular 

traffic flow may receive. This may lead to a mismatch between the characteristics of flow paths as presupposed by the end 

users and those that the actual paths have. This is of crucial importance for scenarios in which the SDN controller is 

compromised; this can lead to man in the middle attacks that are difficult to defend against.  
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From a practical perspective, the risk of dynamic traffic policies having unexpected effects is normally dealt with by using 

policy conflict detection. For instance, both VeriFlow [124] and FortNOX [125] both rely on the real-time verification of 

flow rules as they are inserted in the controller in order to detect whether they break network-wide invariants [124] or 

contradict previously inserted security rules [125].  

Another source of complexity when dealing with dynamic traffic policies is their composition in such a way that desirable 

delegation of authority and conflict resolution properties are preserved. One proposal to achieve this, HFT [126], organizes 

policies as trees in which each subtree can independently be used to determine what action to take over a given packet. 

When conflicts arise between different tree nodes, they can be resolved using user-defined resolution operators which 

exist at every node. 

7.1.4 Risks and benefits of virtualisation 

By decoupling the control and forwarding paths, SDN opens the door for the deployment of virtualised network elements. 

This means that components traditionally used to demarcate the network perimeter, such as Firewalls or Intrusion 

Prevention Systems (IPS) can now be instantiated in various points within the physical network. However, with this benefit 

comes a risk. Firewalls are often used to guard a network perimeter and separate a network into an untrusted outside 

network, a semi-trusted de-militarised zone and a trusted inner network. With a virtualised network infrastructure this 

very concept of a network perimeter becomes slippery. 

The freedom to deploy virtual network elements allows an unprecedented capability to deploy security policies in a 

flexible, modular fashion. For instance, FRESCO [127] allows the compilation of flow rules on the basis of 16 commonly 

reusable modules that provide capabilities such as packet filtering and other firewall functions, scan detection, attack 

deflection or intrusion detection logic. By allowing flexible and quickly deployable security policies, then security can be 

associated with virtual machine instances rather than with physical machines. This means that the security policies can 

follow and be appropriate for the virtual machines running on that infrastructure and, in a scalable deployment, where 

virtual machines are created and destroyed on demand, they can be created within a virtual infrastructure which has 

appropriate policies in place for those tasks. 

Imaginative use of network virtualisation could provide new methods to meet old threats. For example [128], provides 

functionality to make attacks more difficult by constantly changing the public-facing IP address of hosts while maintaining 

a continuous assignment within the network. Hence, named hosts are reachable via virtual IP addresses advertised using 

DNS, but real IP addresses are only reachable by authorized entities. This helps mitigate the possibility of DDoS style attacks 

on hosts. 

Although the increased flexibility provided by SDN can help reduce capital and operational expenses, it can also increase 

the complexity of SDN deployments. This has led to a number of commercial platforms [129], [130] that help system 

administrators manage the challenges specific to virtualised networks and SDN. 
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7.2 Conclusions 

7.2.1 Implication of Security Aspects 

As can be seen from the previous section, SDN has both benefits and costs in terms of network security. In some cases, 

research is already showing the benefits that network virtualisation could have. In other cases, however, it is clear that the 

eventual outlook for SDN security will depend on to what extent the controllers and their interactions with network 

elements are developed with security aspects in mind. 

Certain new attack vectors identified in the previous section arise from the presence of a centralised controller (for 

example an OpenFlow controller). Attacks which compromise this controller or the interaction between the controller and 

the network elements could have severe security risks and, in particular, enable more subtle and problematic attacks than 

traditional man-in-the-middle mechanisms. A compromised SDN controller would have a great deal potential for attack 

and privilege escalation.   

Provided that virtualised network elements do give the promised isolation then this would allow greater freedom diverse 

users to share the same network infrastructure without having to mutually trust each other. However, failures of such 

isolation could lead to the possibility of side-channel attacks and leakage of information (for example about traffic patterns) 

between networks. 

DDoS is a well-known attack vector that works in a number of circumstances. There is good reason to think that SDN could 

mitigate such attacks, for example, simply by providing scalability through a virtualised infrastructure (which might allow 

more physical resources to be brought into play if a given link were overwhelmed). In addition more subtle defences such 

as [128] could use the SDN flexibility to specifically guard against DDoS attacks. Conversely, however, the presence of the 

controller might, itself, present opportunities as a point of failure and provision must be made for failover in case of attacks 

on the controller itself. 

In summary then, there are many reasons to believe that SDN could deliver increased security for network infrastructures, 

however, this will only be the case if steps are taken to mitigate the known risks. 

7.2.2 Intermediate Representation Languages 

Research in the area of security in programming languages as well as their intermediate representations is still continued. 

Analysis of vulnerabilities and new attack techniques is an endless process. Inducting new more complex technologies 

causes threat of appearing new software vulnerabilities. The consequences of leaving unpredictable backdoors may 

become a significant danger for appearing new exploit and in fact serious danger of system takeover. The security aspects 

of language syntax and architecture for intermediate representation layer should be always taken into account during 

designing process.  

Intermediate languages as an additional abstraction layer allows to create additional level of protection. These languages 

are often comparatively simple and thus are a good starting point for a various methods of a static code analysis which can 

be performed while compilation or before execution. IL allows also to create an additional level of permissions. In Common 
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Intermediate Language (CIL) infrastructure a starting code is assigned to one of defined code groups and verified against 

proper security policy. 

Important security issue which is addressed only by GPGPU Intermediate Languages is enforcement of internal separation 

of resources which are visible from outside as a one resource i.e. graphic cards. This functionality is implemented e.g. in 

OpenCL from version 1.2 as a Device Partitioning. 

Different security aspects are presented based on Java and PacketC. Important security issues of those two intermediate 

languages are briefly characterized below. It could become further inspiration during work on HRM and HAL.  

Java Platform provides a safe and secure solutions for running applications. Compile-time data type checking and 

automatic memory management leads to more robust code and reduces memory corruption and vulnerabilities. Bytecode 

verification ensures code conforms to the JVM specification and prevents hostile code from corrupting the runtime 

environment. Class loaders ensure that untrusted code cannot interfere with the running of other Java programs [131]. 

Built-in language security features enforced by the Java compiler and virtual machine are: 

 strong data typing, 

 automatic memory management, 

 bytecode verification, 

 secure class loading. 

PacketC language (described in Section 4.6) dedicated especially for network purposes is more secure language than C99 

[67] and has been designed to maximize application reliability [75]. Some object-oriented features included in packetC 

make this approach more secure and error-free by: 

 strong typing, 

 exception handling implemented using try-catch-throw concept, 

 simplifying type declaration system to prevent typing conflicts, 

 eliminating pointers while providing flexibility for secure dynamic references. 

Both security vulnerabilities description and proposed solutions are planned to be taken into account during HRM and HAL 

design phase. 
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8 Conclusions and next steps 

The very fast innovations reflected in many competitive solutions within the electronic hardware is the source of 

heterogeneity problems which manifests in the existence of problems during managing, controlling and using of larger sets 

of the hardware. This document presents different approaches which have been designed to solve aspects of the 

heterogeneity existing within IT and networking areas: 1) network node forwarding representations (e.g. OpenFlow) 

shared between control and forwarding layer in SDN networks, 2) a common data modelling languages capable of 

representing some parts of network environment (e.g.: VXDL, INDL, NetPDL), 3) silicon circuits description languages, 4) 

intermediate languages translating high-level code into low-level instructions of the broad spectrum of existing processors.  

One of solutions for solving a heterogeneity problem is to make a good abstraction which will be capable of describing and 

operating over different kinds of the hardware and its background technology. Currently, the most promising abstraction 

of network hardware elements is OpenFlow, however this document presents the limitations related to OpenFlow like 

Ethernet-centric data modeling, to close relation on ASIC chip-set API and hiding very specific functionalities of the 

hardware which can be useful. In order to deal with these limitations,  extensions of OpenFlow protocol should be 

proposed which will contain more flexible data path model and will operate over more high level programming 

representation. The proposed solution should be open for new kinds of hardware platforms and programming 

environments (NetFPGA,, Intel DPDK, etc.). 

From the point of view of intermediate representation languages, a modular design of software components is a key factor 

to successfully deal with the hardware heterogeneity and straightforward adaptation to new requirements. In the 

document several solutions have been elaborated allowing to transform high-level operations into a low-level hardware-

specific machine code. These factors should be applied in the HAL solution developed within the project. On the other 

hand, network description languages (VXDL or INDL) could be used by OFELIA resource management software whereas 

NetPDL could allow network element learning of new protocols or protocol extensions (i.e.: flow matching of a new field 

and its modification) which will enable of faster and easier network protocol stack evolution/revolution towards Future 

Internet solutions. 

This deliverable will drive the work in T2.2 of the ALIEN project, where the design of Hardware Abstraction Layer (HAL) and 

Hardware Description Language (HDL) for non OpenFlow capable devices (alien hardware) will take place. The HAL should 

interface with different type of alien hardware and hide their complexity as well as technology and vendor specific features 

from OpenFlow control framework. The HDL for alien hardware should provide a uniform representation of any type of 

alien hardware. 
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