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Abstract 

This document describes a Hardware Abstraction Layer (HAL) designed to support OpenFlow protocol implementation 

regardless of protocol’s version on non-compatible OpenFlow network devices. This abstraction layer supports various 

hardware platforms in terms of data plane architecture and closed control plane protocols. The document describes the 

software modules inside the HAL, their functionality and interfaces. The aim of this document is to present the features 

of the designed HAL such as extensibility (programmability) and modules reusability for third party users. 
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Executive Summary  

This deliverable specifies the Hardware Abstraction Layer (HAL) which has been developed within the ALIEN project. This 

includes a comprehensive proposal for a logical architecture of HAL. The development of HAL is the main objective of the 

ALIEN project in order to realize the networking of OpenFlow capable devices with non-OpenFlow devices.  The purposed 

HAL architecture emphasises on decoupling of hardware-specific control and management logic from the network node-

abstraction logic. This enables a network with HAL-enhanced devices to be controlled in the same manner (i.e. 

compatible) as with network elements that natively support OpenFlow. More importantly, the introduction of HAL goes 

beyond establishing a unified control plane in legacy networks. Indeed the introduction of HAL brings in additional 

features, e.g., programmability of network nodes, point-to-multipoint data transport, and optical transport data plane, 

etc. 

The document briefly introduces the motivation behind this work, i.e. the need for developing Hardware Abstraction 

Layer and then outlines the specific requirements for the design of HAL to make it compatible for a number of popular 

hardware architectures of network devices including x86-based packet processing devices, lightpath devices, point to 

multipoint devices, and programmable network processors.  Based on the requirements a state-of-the-art architecture is 

proposed for HAL. Choosing a modular design approach, HAL is decomposed into two sub-layers, i.e., 1) Cross-Hardware 

Platform Layer to address the issues of node abstraction, virtualization, and communication mechanisms and 2) 

Hardware Specific Layer which is responsible for discovery and configuration of network resources associated with a 

particular hardware platform. The HAL logical architecture design was tightly coupled with HAL common parts 

developments in task 2.3. These activities are contribution towards [xDPD] and [ROFL] projects. Although the HAL 

architecture in ALIEN project is driven from xDPD and ROFL projects, the architecture presented in this document is a 
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unique design as a result of xDPD/ROFL analysis. In other words, the HAL design and implementation not only covers 

xDPD/ROFL projects but also generalize them to support more platforms with more functionality.  More information 

about relation between HAL architecture and practical software implementation will be provided in deliverable D2.3. 

The document also describes the process of extending network device capabilities and configurations using HAL. For this 

purpose “Programmable Abstraction of Datapath” (PAD) architecture is proposed which along with a programming 

language and a protocol definition language can be used to deploy any desired functionality in the network elements. 

PAD architecture is at early stage of development and currently out-of-scope of [xDPd] and [ROFL] software projects 

development. 

This deliverable is public and may be followed by all people interested in hardware abstraction issues as well as in SDN 

concept and OpenFlow environment. 

1. Introduction 

Software Defined Networking (SDN) and in particular OpenFlow protocol as an SDN enabler is one of the areas which has 

gained a lot of attentions in recent years. These attentions have led the OpenFlow protocol to see many changes from its 

first public release. Despite all the attentions from the industry and academia towards the OpenFlow protocol, the speed 

and the amount of changes in the protocol have made the implementation and support difficult for vendors and third 

party developers. Moreover, although OpenFlow protocol has a single specification for each version, the diversity of the 

network hardware and software platforms force vendors and third party users to go into the process of creating new 

OpenFlow libraries for each and every platform for OpenFlow implementation. This makes the OpenFlow deployment 

more laborious and time consuming.  

Apart from the issues mentioned above, the OpenFlow protocol is under process of standardization but nevertheless the 

protocol itself has some pitfalls in its current state which are listed below: 

 It is designed to address the ASIC and campus switches which rules out the processing capabilities beyond layer-

2 layer-3 forwarding 

 Lack of support for advanced processing capabilities for Network Processing Units (NPU) and general CPU 

architectures 

 The protocol’s processing framework only supports “stateless” operation. That means stateful processing 

beyond memory-less operation is not available. Moreover, virtual ports are out of the scope of OpenFlow. 

 The ports are based on Ethernet abstraction 
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In this deliverable a Hardware Abstraction Layer is introduced which tries to address these issues. The designed HAL 

overcomes all the above problems by creating a platform that can be instantiated for specific situations. In the following 

chapters second chapter, the requirements of the HAL are explained. In chapter three the logical architecture of the HAL 

and its modules are described and following that in chapter four the programmability feature is explained. Finally in 

chapter five we conclude and summarise the document.     

2. HAL Platform Requirements and Support Challenges  

The HAL deals with hardware platforms to provide an abstracted version of them for third party user to implement their 

OpenFlow applications on the hardware platform. Similar to computer operating systems, HAL has to have the ability to 

interact with various hardware devices with different architecture. Comparing the HAL design for computer and network 

devices, one will notice that for network devices in some cases the nature of modular hardware platform makes them 

reconfigurable and also the data plan in some of network devices are distributed, i.e. the hardware is not placed in one 

fixed box. These are the fundamental differences between computer and network device hardware architecture which 

makes the design of the HAL for network devices very different from the HAL for computers.  Moreover, in our project, 

the proposed HAL for network devices should communicate with platforms that do not have standard interface for 

needed abstractions (i.e. closed or proprietary platforms). To give a better understanding of the facing challenges, in the 

following, the hardware architecture of all network devices that are going to be used in the project are briefly explained.  

2.1 x86-based Packet Processing Devices 

As most of the following sections deal with “packet processing devices”, the first section deals with packet handling in 

software, which is the simplest understanding of programmable network devices. Computing platforms from server 

boards to mini PCs like Raspberry Pi, Arduino, etc., have seen a shift from pure compute capabilities to I/O performance 

as an important characteristic figure. The typical computer today has at least two or three independent network 

interfaces (Ethernet, WiFi, LTE), which makes it potentially a forwarding node. 

While the implementation of OpenFlow on these boxes (typically equipped with some Linux or embedded Linux OS) was 

the first development that took place in the SDN area, the split of control and data plane is not as obvious for x86-based 

devices as for network devices with an externalized forwarding plane. The main question that has to be answered is how 

to build a fast packet handling pipeline with minimum interventions from the standard OS kernel.  

Kernel-based implementations of the pipeline 
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The Open vSwitch kernel module has replaced the traditional Linux bridge from Kernel 3.3 onwards. This real impact 

doesn’t lie on the fact that there could be an OpenFlow-switch, but in the fact that the OVS kernel module is actually 

exposing itself as a pipeline and that there is an API providing basic control functions to the daemon. This can even been 

seen as a similar approach to HAL, although OpenFlow is not addressed at this level. 

User-space implementations of the pipeline 

Kernel space implementations have the disadvantage of being tied to the kernel. In fact, new kernel versions may change 

the internal APIs more frequently than other system level (ie: POSIX) interfaces. Any overload or crash in the 

implementation is affecting the overall system performance to the extent that the system. Therefore user-space 

implementations have been investigated that allow starting/stopping datapaths at runtime, and that isolate potentially 

multiple instances running concurrently. 

Speeding up User space implementations 

Handing over packets from kernel to user space in Linux implies multiple copies of the frame: From the NIC to the kernel, 

from the kernel to a ring buffer, then after processing the frame gets copied into another ring buffer associated with 

another port. As this copy operations are prohibitively expensive when looking for a fast datapath implementation, there 

are several ways explored at the moment that allow a speed-up of packet processing: 

 Packet MMAP [PACKETMMAP]: This is a Linux kernel patch designed to improve packet processing through a zero-

copy mechanism. It creates a circular buffer of a configurable size in kernel-space which is mapped in the user-

space to expedite the packet processing and forwarding. The shared buffer helps avoid the system calls for 

packet reading and also saves memory which is otherwise required to make a copy of a packet in order to pass 

it from kernel- to user-space. Moreover, the patch also improves packet transmission efficiency by allowing 

multiple packets to be sent using one system call. These enhancements enable a Linux box to handle network 

links carrying a data rate in the order of Gbps. 

 Netmap [NETMAP]: Netmap is a framework implemented in Linux/FreeBSD for fast packet I/O processing and is 

capable of handling up to 10 Gbps links. It improves packet processing through pre-allocation of memory 

resources, processing of large packet batches with single system call and offering a shared buffer space 

between kernel- and user-space to avoid memory copies. This way it provides user applications with very fast 

access to network packets, both on the receiver and the transmitter side, and including those from/to the host 

stack. The distinct features of Netmap include safety of operation and hardware agnostic approach.  

 Intel DPDK [IDPDK]: The Intel Data Plane Development Kit (DPDK) is an open source set of data-plane libraries 

and controller drivers for Intel Architecture based platforms. It creates an Environment Abstraction Layer (EAL) 

for a specific hardware/software environment that has been optimized for the Intel Architecture mode, 

available hardware accelerators, and other hardware and operating system elements. This brings fast packet 

processing capabilities to the Intel Architecture based platforms which enables faster development of high 

speed data packet networking applications. The performance of DPDK scales with the underlying hardware 

from ultra-low-power Atom processor to new generation Xeon processors. 

The latter two are similar in that the port is logically detached from the kernel, and attached to a datapath element. This 

allows making either a single copy or no copy of the packet when passing it through the pipeline. 
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2.2 Lightpath Devices 

Traditionally IP and transport network are managed and operated by separate groups. Typically both networks do not 

interact with each other. IP network regards the underlying transport links as a static pipeline.  Although IP (packet) is the 

dominant domain in SDN literature and particularly in OpenFlow protocol, the emergence of converged transport 

networks could have a significant impact on how multi-layer core networks are built by leveraging the SDN centralized 

network view concept.  

Despite the switching paradigm in electrical domain which can be at frame granularity, in optical domain the switching 

architecture can be constructed to switch fibres or ports that may contain multiple channels or wavelengths. Fibre 

switching usually is applied in data centre or small to medium range city network with large amount of fibre resources 

since the switching granularity is in fibre. Although the fibre switching happens by switching between ports, wavelength 

switching is typically implemented by a reconfigurable add/drop multiplexer (ROADM). 

In optical network, traditionally the control plane uses a centralized Network Management System (NMS) that controls 

the underlying data plan. Although in principle it is similar to SDN concept, in fact it isn’t. In practice the NMS is not able 

to react to on-demand to changes in data plane to establish an end-to-end path between two ports or nodes: The control 

plane has to calculate the path and configure ports or nodes before any actual transmission happens. This is because the 

control plane has no visibility on the data passing on the data plane. This is in contradiction to what happens in IP or 

packet networks where the control plane can monitor the data on the data plane and react (forward, drop, manipulate) 

to them based on the application or user policy. 

By applying the SDN concept and following the OpenFlow specification, i.e. abstracting the data plane into a flow-table, 

transport circuits could be represented as a flow-table too. The addendum v0.3 [OFADD] to OpenFlow v1.0 specification 

is the very first attempt to apply the SDN concept to circuit switching domain. Although the SDN principles are applied in 

circuit switched domain by implementing OpenFlow protocol, however since the protocol has been created for the IP 

domain, this does not mean that every OpenFlow functionality in IP (packet) domain is also available in circuit domain. 

All the modifications, abstractions and functions definitionare defined in this addendum. 

The ALIEN project, by applying the OpenFlow specification addendum in its architecture, creates a platform for third 

party users to abstract the underlying transport data plane into flow-table which ultimately holds the information for 

cross connections on the device.   

2.3 Point to Multi-point Devices 

In the context of Access Networks, one of the main challenges is the last mile. This part of the network is considered as 

the bottleneck in terms of bandwidth and also one of the most expensive segments. The main goal of the Access 

Network is to connect the customers with the operator's premises in the most cost-effective manner. There are different 

technologies, such as xDSL, DOCSIS, GPON or GEPON, which rely on different transmission media, such as twisted pair, 

coaxial cable or optical fiber, respectively. Most of these technologies are based on a shared media to reduce costs by 

sharing part of the physical link among multiple customers. This implies that the same physical port at the operator's 

equipment (i.e. the head-end) is shared by multiple customers (i.e. the leaves). As a result, a point to multi-point 

topology (i.e. a tree) is obtained. 
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The whole system, including the customer's side equipment, the shared media and the operator's side equipment, can 

be abstracted as a point to multi-point device. The asymmetry between the head-end and the leaves is one characteristic 

of these systems, in which the head-end is the "intelligent" part that determines how the access network media is 

shared. 

The last mile solves the problem of connecting the customers' equipment with the operator's network. As a 

consequence, the technologies developed for access networks focus on moving the traffic up (i.e. from the customer to 

the operator) and down (i.e. form the operator to the customer). With respect to this issue, the traffic between 

customers sharing the same physical media could be out of the scope of some of these technologies. In these cases, 

external equipment should be used for this type of connection between customers. 

In the ALIEN project we are dealing with two different access network technologies: DOCSIS and GEPON. Although both 

technologies can be abstracted as a point to multipoint device, there are some particularities that must be considered. 

In the DOCSIS system, the "intelligent" head-end, the CMTS equipment, can be configured basically in two different 

operation modes, as a router and as a Layer 2 bridge. Typically, the CMTS is configured as a router, however, the 

operation mode is selected depending on the target deployment. In the context of the ALIEN project, the DOCSIS system 

must be abstracted to behave as an OpenFlow switch. As a consequence, the CMTS is configured as a Layer 2 bridge, and 

VLAN/L2VPNs are configured to bridge the traffic from the leaves, i.e. the cable modems (CMs), to the head-end, i.e. the 

CMTS, and vice versa. One relevant aspect to consider is that the traffic bridged from the CMs to the CMTS is tagged (i.e. 

VLAN tag is added) at the egress port. Moreover, when acting as a Layer 2 bridge, the CMTS does not implement the 

forwarding between two CMs. It only works in the up/down directions, which means that an external box in the 

aggregation network is needed to perform the forwarding between the CMs. Typically, in real deployments, attached to 

the CM (or even in the same box) a residential/home gateway is also provided to perform some processing at the 

customer's side. 

The GEPON box is a closed source box with limited information available about the main control chip Teknovus TK3721.  

The standard working mode for the device is that control is through a proprietary interface either through a GUI program 

running on windows and connected to the management Ethernet port or through a CLI which connects via the serial 

port.  Even if it were possible to install a version of OpenFlow directly on the control chip this would limit the applicability 

of the approach to only running on those models of GEPON which have a TK3721 chip.  A second problem is the speed at 

which control actions can be implemented.  There is no guaranteed speed at which control actions input to the chip 

occur and some of them are slow.  The intended operation mode of the GEPON is to provision links, QoS etc. very rarely 

and hence it is not expected to respond quickly to control inputs.  On occasions, control inputs have response times 

greater than one second or require a reboot of the machine.  In that case, slow responses are inadequate for responding 

to OpenFlow requests in a reasonable manner and a different mechanism is needed. 

When dealing with a closed box from vendors (e.g. a CMTS from Cisco), the actual behaviour of this equipment cannot be 

changed or reprogrammed, it can only be configured to behave as expected in the target scenario. In this case, this 

means that the equipment cannot be modified to behave as a full functional OpenFlow switch. The interfaces (which may 

conform to published standards, as is the case of the DOCSIS, or use proprietary protocols, as is the case of the GEPON) 

exposed by the vendor are the only entry point to modify the device’s behaviour (based on the set of alternatives 

approved by the standard). As a consequence, the underlying technology could impose some restrictions to be fully 

compatible with the OpenFlow specification. For instance, the DOCSIS technology defines the service flows as a 

unidirectional stream of packets between the CMTS and the CM. All the data packets need to be associated to one 

service flow, and these service flows must be provisioned in advance. This characteristic of the DOCSIS specification is 
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not compatible with the abstractions made by OpenFlow model, which are based on a switch model that pre-

provisioning of packet streams are not needed or even considered. In the case of the GEPON similarly, flows can be 

provisioned in advance but it is not the intended mode to provision flows quickly “on the fly” in response to events.  

2.4 Programmable Network Processors 

Programmable Network Platforms represent a set of network equipment containing a re-programmable hardware unit 

(NPU or FPGA) that can be adapted to a wide range of network processing tasks (i.e. packet switching, routing, network 

monitoring, firewall protection, deep packet inspection, load balancing, etc.). These platforms allow for expressing 

packet processing control/service logic, using a programming language, in form of compiled source code that can be 

implemented on a single hardware unit. 

Currently, there are many programmable network platforms available in the market differentiated by programming 

technologies and processor architectures: 

 Programmable silicon gateways (e.g. NetFPGA) 

 Traditional NPUs (e.g. EZchip NP and NPA families, Marvel Xelerated, PMC-Sierra WinPath), 

 Multicore CPUs with network enhancements (e.g.: Cavium Octeon family, Broadcom XLS/XLR/XLP, LSI Axxia, 

Freescale QorIQ, Tilera), 

 Novel hybrid multicore NPUs (e.g.: Netronome NFP-6xxx, EZchip NPS). 

From those available platforms, EZchip NP-3, Cavium Octeon-I and NetFPGA network programmable platforms are used 

in the ALIEN project. Some common, on the paper, characteristics between all these platforms such as traffic 

performance, logic implementation and programming flexibility must be treated differently. 

To have the optimum traffic performance, the different sets of programmable platforms use the following techniques: 

 Integrated ASIC circuits to boost the calculation tasks (protocols headers parsing, pattern/regex matching, 

checksums, cryptography, security, packet classification and queuing), 

 TCAM memory structures for fast and flexible database lookup especially for IP routing, 

 Multicore, super-scalar processor architectures for parallel processing of network packets (also multithreading), 

 Specialized micro-coded engines (i.e. task optimized cores) which are faster than RISC cores, 

 Core pipelining where each core (i.e. task optimized core) performs one specific task. 

However, some of these listed techniques (e.g. pipelining, task optimized cores, integrated ASIC circuits) reduce flexibility 

as they are mostly statically built in silicon chips. Any limitation in programming flexibility can have an influence on full 

support of OpenFlow for a programmable platform. 

The key factor for programming flexibility is the programming language used for a particular platform. Silicon description 

languages (like Verilog for NetFPGA) and assemblers (for traditional NPUs) are hard for programming and usually   

higher-level languages are preferred.  Currently, most of the multicore CPUs with network enhancements and novel 
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hybrid multicore NPUs can be programmed with C/C++ but nevertheless development for network processors is still a 

challenging, difficult and time consuming task. 

Programmable Network Platforms, besides network processor chip, also contain standard x86 CPU that usually used to 

deploy control and management software and is the only common hardware block for all platforms. This allows 

introducing cross-hardware software logics for programmable network devices. However implementation of a certain 

packet processing functionalities (i.e. MPLS labels, IPv6 addresses, VXLAN tunnelling) are completely different for each 

network processor platform 

Programmable network processors are ideal hardware platforms to introduce and validate new networking concepts.  To 

take advantage of this possibility, in the ALIEN project, dynamic adaptation of network node capabilities is investigated in 

order to “learn” new protocols (e.g. Content-Centric Network protocol stack) to a data path element with new 

processing actions which later could be added to the OpenFlow protocol action set.  

3. HAL Logical Architecture 

Hardware Abstraction Layer (HAL) provides a modular solution for different types of network devices to make an 

abstraction of the device which is compatible with OpenFlow protocol. To do that, it decouples hardware-specific control 

and management logic from the network-node abstraction logic (i.e. OpenFlow). Decoupling in the HAL hides the device 

complexity as well as technology and vendor specific features from the Control Plane logic. The decoupling is done by 

splitting the HAL (see Figure 3.1) into two layers:  

1) Cross-Hardware Platform Layer which is in charge of node abstraction, virtualization and communication 

mechanisms and  

2) Hardware Specific Layer which is in fact a collection of the hardware specific software modules, collectively 

called driver, responsible for discovering hardware platform resources and configuring network devices. 

 These two layers are connected to each other with two interfaces (which will be described in section 3.4) : 

 1) Abstract Forwarding API as an interface to communicate with hardware driver,. 

 2) Hardware Pipeline API for hardware platforms that use the OpenFlow datapath implementation provided by 

the Cross-Hardware Platform Layer.  
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Figure 3.1 HAL architecture block diagram 

Although the designed HAL can be applied for compatible OpenFlow devices (i.e. devices with ability to be operated by 

OpenFlow out of the box), it also targets non-compatible OpenFlow network devices (like those described in [D3.2]) that 

have additional capabilities such as programmability, point-to-multipoint data transport, optical transport data plane, 

etc.  

 The gradual and modular abstraction in the HAL architecture gives the possibility of changing and extending any 

platform without compromising the whole HAL architecture. It also makes HAL’s implementations easier for similar 

network platforms by module reusability in common components (i.e. OpenFlow pipeline implementation). In the 

following, each HAL sub-layer structure and their functionalities and interfaces are explained. 

3.1 Cross-Hardware Platform Layer 

The Cross-Hardware Platform Layer is shared layer between all different platforms and composed of independent 

modules dealing with device or system management, monitoring and control plane (OpenFlow). On the management 

side, this layer presents a unified abstraction of the physical platform (fundamentally physical ports, virtual ports, 

tunnels, etc.) to plugin modules. The plugin modules can steer the configuration of the OpenFlow endpoints, for 

instance, defining the OpenFlow controller. Examples of management plugins are NetConf/OFConfig agents (see Section 
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3.1.1) or a file-based configuration reader.  Another example of plugin is the Virtualization Agent (VA) described in 

Section 3.1.3.  

 

Figure 3.2  Cross-Hardware Platform Layer architecture. Multiple OpenFlow controller  handled by the OpenFlow endpoint 

In the control plane part, the OpenFlow endpoint is responsible for maintaining connection with the OpenFlow 

controller. The endpoint encapsulates all the necessary control plane functionalities, as well as a handle to manage the 

forwarding state down to the platform driver.  

The VA is the component in charge of slicing the device to be shared among multiple users. VA interacts with the 

OpenFlow endpoint to perform the flowspace slicing operations. To make these operations agnostic to OpenFlow 

version, the VA is queried by the endpoint before creating the OpenFlow messages directed to the controller and after 

the payload is de-capsulated from the OpenFlow messages coming from the controller. 

3.1.1 Network Management 

SDN defines the separation of the control plane from the data-plane of a network device [MLA]. Using the OpenFlow 

protocol, the control plane can communicate with the data plane to perform several functionalities such as adding or 

removing flow-rules and collecting per-flow, per-table statistics. However, when using the OpenFlow protocol it is falsely 

assumed that the forwarding devices (i.e., the OpenFlow-enabled switches) are already configured with various 

parameters such as the IP address(es) of the controller(s). Therefore, it is important to distinguish time-sensitive control-

functionalities for which the OpenFlow protocol was designed for (e.g., modifying forwarding tables, matching flows) 

from non-time-sensitive management and configuration functionalities which are essential for the operation of the 

OpenFlow-enabled device (e.g., controller IP assignment, changing ports status, etc.) [OF-CONFIG]. Consequently, a 

standard protocol is required for performing these configuration management functionalities. 

In 2002, the Internet Architecture Board (IAB) organized a workshop for guiding the development of the future network 

management standardization activities. The output of this workshop was a set of requirements to be met by the future 

management protocol [RFC3535]. In 2003, a working group was formed to produce a protocol meeting these 

requirements. The protocol produced from this working group was NETCONF [RFC6241]. NETCONF provides several 

features including, but not limited to, the distinction between configuration and operational states, concurrency support 

and transactions across multiple network elements, which lacked in management protocols introduced earlier, such as, 
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for example, SNMP [RFC3410]. Each network device that supports the NETCONF protocol should provide a data model 

that specifies the parameters available for configuration and management. For this purpose, YANG [RFC6020], a highly 

readable and compact domain specific language, is used for defining NETCONF data models.  

In the original work plan for the ALIEN project, management aspects were not taken into consideration. However, as 

project execution progressed, adding management plane functionality to HAL became an important technical 

consideration. In the process, it was decided to consider the technical feasibility to add management plane functionality 

to HAL during the project execution, and it appears that this is indeed desirable. As such, ALIEN will work towards this 

implementation, a decision which is in line with recent work in SDNRG [SDNLAT]. Although, no decision has been made at 

this stage about the exact implementation details of the HAL management plane, it appears that NETCONF and OF-

CONFIG [OF-CONFIG] are both good candidates for the HAL architecture.  Using NETCONF for network management 

together with YANG for data-modeling in the ALIEN HAL architecture provides a firm base for simpler, more effective and 

robust configuration management. More progress in this front will be reported in the upcoming deliverable D2.3. 

3.1.2 OpenFlow Endpoint 

The OpenFlow endpoint component (Figure 3.3) establishes a connection channel to the controller to send/receive 

encode/decode OpenFlow protocol messages, implements OpenFlow-specific session negotiation and manages state 

maintenance. It converts the abstraction of any OpenFlow protocol version to common data model with a superset of all 

OpenFlow versions features. The OpenFlow endpoint is an entity that must be initially configured with a specific 

OpenFlow version number and can cooperate with OpenFlow controller supporting that version of the OpenFlow. The 

OpenFlow endpoint communicates with other HAL entities via internal HAL interface (i.e. Abstract Forwarding API). The 

Cross-Hardware Platform OpenFlow endpoint common data model is part of the Abstract Forwarding API. The data 

model can be easily extended to handle new header matches, new matching algorithms and new packet processing 

actions.  For more information about Abstract Forwarding API and its data model please see section 3.4.1. 

 

Figure 3.3  OpenFlow entities and interfaces within Cross-Hardware Platform Layer 
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The OpenFlow pipeline component implements any number of OpenFlow tables. However, the Cross-Hardware Platform 

OpenFlow pipeline processes a packet abstraction as a real network packet. The packet abstraction object attributes are 

presented in Figure 3.4. The packet abstraction is composed of hardware platform reference to a real network packet 

(i.e. a pointer to memory where packet is stored, automatically generated reference id, etc.), OpenFlow action-set which 

is passed from one OpenFlow table to next one and modified according to matched flow instructions. Packet abstraction 

object could also store all successful match entries for diagnostic purposes. 

 

Figure 3.4  Cross-Hardware Platform packet abstraction object attributes 

Figure 3.5 presents how the Cross-Hardware Platform software pipeline processes a network packet. Upon coming a 

packet into the Hardware Specific Layer, a packet reference is created and is sent to Cross-Hardware Platform Layer 

which triggers packet abstraction object creation and its processing by the OpenFlow pipeline. Each OpenFlow table can 

immediately apply changes (modify values of header fields, add/remove tags to the packet located in Hardware Specific 

Layer (packet reference is required) or modify OpenFlow action-set. Each table can also decide about final destination of 

the packet and request for sending it to a network port on the device, forward it to the controller (the pipeline is 

requesting packet-in event generation by Hardware Specific Layer which must send the whole or part of the real packet 

to the OpenFlow endpoint) or just drop it. The packet-out event, which contains a packet from OpenFlow controller, is 

also processed via the pipeline, however, the packet bytes must be stored in the Hardware Specific Layer before pipeline 

processing could start. 

 

Figure 3.5  Workflow between actual packet and  packet abstraction in Cross-Hardware OpenFlow pipeline process 
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Besides the multiple OpenFlow tables and action-set mentioned above, the Cross-Hardware Platform OpenFlow pipeline 

supports all other OpenFlow features like priority matching, flow entries expiration, group table, meter table and counter 

objects.  

The Cross-Hardware Platform OpenFlow pipeline must be a pure software and performance efficient implementation of 

the OpenFlow pipeline which should be deployable on broad spectrum of available CPUs (for software switch solutions) 

or even modern NPUs (those platforms provide a good traffic throughput for any ANSI-C programming language based 

packet processing implementations).  

3.1.3 Virtualization (slicing)  

The Virtualization Agent (VA) is an internal to HAL which aims at providing a distributed slicing mechanism for the ALIEN 

devices. Like other virtualization approaches ([FlowVisor] and [VeRTIGO]), the VA’s main objective is to allow multiple 

parallel experiments to be executed on the same physical substrate without interfering each other. The VA has been 

designed with the following goals:  

(i) Avoid Single Point of Failures (SPoF) through a distributed slicing architecture. 

(ii) Provide an OpenFlow version agnostic slicing mechanism . 

 (iii) Minimize the latency overhead caused by the slicing operations. 

 

Distributed slicing 

The VA architecture is designed to avoid SPoFs. In fact, differently from other approaches with a central proxy like 
FlowVisor and VeRTIGO, the virtualization operations are performed directly on the nodes. A failure of the Virtualization 
Gateway (see section 3), the only centralized element in the architecture, can only prevent the instantiation of new slices 
without affecting the ones already in operation. However, a failure of FlowVisor or VeRTIGO would bring down all the 
running slices. 

 

Protocol agnostic 

The VA does not inspect the control protocol (here OpenFlow) to perform the slicing process therefore it can, in 

principle, support any control protocol (even different from OpenFlow). 

 

Latency overhead 

The resource virtualization operations have a cost in terms of additional latency on actions that cross between the 

control and the forwarding plane. The overhead depends on how the virtualization mechanism is implemented but other 

elements can contribute to the total latency too. In particular, contrary to FlowVisor and VeRTIGO, the Virtualization 

Agent neither inspects the OpenFlow protocol nor needs to establish additional TLS connections.    



D2.2 Specification of Hardware Abstraction Layer  

 

Project: ALIEN (Grant Agr. No. 317880) 
Deliverable Number: D2.2 
Date of Issue: 29/04/14 

 

19 

 

Figure 3.6  The slicing process workflow for new packets and FlowMod messages  

The slicing mechanism 
In OpenFlow protocol, for each incoming packet that does not have an entry in the switch flow table, a PacketIn event 

is generated and sent to the controller through the control channel. The controller, in turn, can answer with a  FlowMod 

message to modify the flow tables of the switch.  

Referring to the flowchart depicted in Figure 3.6, for each new packet, the fields of its header are matched against the 

flowspaces assigned to the configured slices. If the VA finds a match, the header is sent to the related OpenFlow 

endpoint which builds the packet-in message by using the protocol version used for the communication with the 

controller. Vice-versa, if no correspondence is found, the VA tells the lower layers to drop the packet. 

On the other side, the VA applies the slicing policies to the OpenFlow messages sent by the controller to the switch. In 

order to keep the VA internal processes agnostic to protocol version, the VA intercepts the actions and the related flow 

match after they are de-capsulated from the OpenFlow message and before they are inserted into the switch's flow 

table. The actions are checked against the controller's flowspace (i.e. the VA checks if the controller is trying to control 

traffic outside its flowspace) and the match is intersected with the flowspace. The latter operation ensures that the 
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actions are only applied to the flows matching the flowspace assigned to the controller, i.e. the VA prevents interference 

among different slices. 

3.2 Hardware Specific Layer 

The idea behind the Hardware Specific Layer is to deal with diversity of the network platforms and their communication 

protocols to overcome the complexity of implementing OpenFlow protocol on different hardware. In real world, every 

network equipment or platform has its own protocol or API for communicating, controlling and managing the underlying 

system. In the proposed HAL, the Hardware Specific Layer is responsible to hide the complexity and heterogeneity of 

underlying hardware control for message handling and provide a unified and feature rich interface in its northbound for 

the upper layer i.e. Cross-Hardware Platform Layer. Although the Hardware Specific Layer on its northbound has a 

unified interface, on the southbound, it is in direct contact with the underlying hardware, which makes it dependent to 

the hardware in terms of communicating protocol and programming language. This results the layer to have different 

implementation method for each platform.  

Following the modularity principle and also in order to make the HAL flexible enough to support different hardware 

platform, different modules in Hardware Specific Layer take care of supporting hardware platforms heterogeneity. The 

layer has been designed in a way that the changes inside its modules do not affect the upper layer (hardware 

independent) functionality and in most cases there is no need to manipulate the architecture. In the following the 

modules inside the Hardware Specific Layer and their functionalities are explained. 

Discovery 

In order to initialize Cross-Hardware Platform Layer, a set of information about network device(s) must be provided from 

Hardware Specific Layer. The information needed are:  

(i) A list of devices working together as a single hardware platform instance and controlled by a single OpenFlow 

agent instance. For each device, the access information is also required.  

(ii) A list of all network ports and their characteristics (e.g. transmission technology, transmission speed, 

operational status, etc.) from every device.  

(iii) The internal hardware platform topology (e.g. how all devices within a hardware platform instance are 

interconnected) must be recognized. This is required for orchestration functionality to work properly in 

Hardware Specific Part (HSP) in HAL.  

There are various design options to implement discovery functionality. The discovery can be manual (e.g. platform 

administrator creates static configuration files containing some part of required information and HSP loads that 

configuration file during initialization) or automatic (e.q. Hardware Specific Layer queries each device for all information 

and reacts to new notifications coming from the device) or combination of both approaches. Depending on the 

implementation and also the platform, the discovery process could be active just only during Hardware Specific Layer 

initialization or executed continuously (e.g. periodical queries in order to discover changes in the hardware). Table 3.1 

presents discovery functionality implementation in Hardware Specific Layer for given Alien hardware platforms. 
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Table 3.1 Discovery functionality overview for given ALIEN platforms 

Device Discovery functionality overview 

EZappliance EZappliance discovery functionality is mostly automatic through Corba interface established to 
the device and only device access information is stored statically within the configuration file. 

EZappliance is a hardware platform represented by a single device so topology discovery is not 
required.  

NetFGPA Basic information comes from default set of settings or configuration file. NetFPGA is a single 
device; there is no "internal topology of the device". 

ATCA Functionality will be configured via a config file of xDPd, and discovered by the controller via 
OpenFlow messages (features_reply and table_features_reply for v.1.2) 

DOCSIS Proxy based solution deployed over DOCSIS access network has a known topology model. 
However, users' CPEs can join to the network dynamically and they are detected and exposed as a 
new interface at the virtualized model of the network. 

GEPON The discovery can be provided by a configuration file or by polling the GEPON device via the 
management terminal for new ONU being plugged in. 

Layer0 switch Discovery functionality is done in Layer0 switch using the management interface of the device. 
The hardware platform provides one interface per device. The details of this interface are given 
using a configuration file. 

Topology discovery is not required since each device is managed independently. 

 

Orchestration 

In some cases, the hardware platform is composed of multiple hardware components acting independently but 

controlled centrally (e.g. DOCSIS, GEPON). The orchestration procedure goal is to send configuration commands to all 

hardware components that must be engaged in the request handling in a synchronized, ordered and atomic fashion. The 

orchestration process must identify if coming request from Cross-Hardware Platform layer was successfully applied to all 

hardware components. Also, the orchestration process should be able to recover from configuration failures on a single 

hardware component and restore initial state of all the hardware components. The orchestration process is initialized by 

a request (e.g. Add-flow method of AFA interface) from Cross-hardware Platform interface. 

Table 3.2 presents orchestration functionality implementation in Hardware Specific Layer for given Alien hardware 

platforms. 

Table 3.2  Orchestration functionality overview for given ALIEN platforms 

Device Orchestration functionality overview 

EZappliance Orchestration not required because EZappliance platform is composed of a single device. 

NetFGPA Orchestration not required because NetFPGA card is  a single device. 

ATCA For the OCTEON NPU, no orchestration is required. Between different blades of the ATCA chassis, 
for now, a vendor-specific Broadcom configuration tool (FastPath) is used to guide traffic in and 
out the OCTEON. 

DOCSIS Orchestration is the base of the solution to expose a set or resources as a unique DPID (Datapath 
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Identifier). As an example, in order to provide a virtual model, messages incoming from the 
controller may require to be splitted into several particular messages over the devices of the 
network to perform the requested action (stats report, set a configuration, set a new flow...) by 
the controller. Orchestration also is responsible of hiding network internals which are not 
exposed to the controller (each user DPID connection implies a message exchange between proxy 
and clients' DPID) 

GEPON Orchestration not required.  The interaction is only with a head end device (the OLT) which takes 
care of connections to other devices.  

Layer0 switch Orchestration not required. The switching hardware is composed of a single device. 

 

Translation 

The Translator module in Hardware Specific Layer is responsible for the translation of data and action models used in 

Cross-Hardware Platform Interfaces (mostly OpenFlow-based) to device’s protocol syntax and semantics and vice versa. 

Translator acts as a middleware between OpenFlow switch model and underlying physical device. Due to heterogeneity 

of the network devices, translation specification and implementation is different for each network device. Generally the 

module is responsible for translating all port numbering, flow entries and packet related actions from OpenFlow switch 

model into platform specific interface commands and processor instructions or configuration modifications D3.2. In most 

cases of hardware platforms, the translation functionality will be stateful and requires storing of information about all 

handled OpenFlow entries and its translation to specific device commands. It allows to modify or delete a device’s 

applied re-configuration which strictly refers to a given flow entry. 

Table 3.3 presents translation functionality implementation in Hardware Specific Layer for given Alien hardware 

platforms. 

Table 3.3 Translation functionality overview for given ALIEN platforms 

Device Translation functionality overview 

EZappliance OpenFlow actions are translated into memory structure entries located within NP-3 network 
processor chip. The semantics used for EZappliance memory structures is quite similar to 
OpenFlow (e.g. in NP-3, there is defined flow memory structure containing flow entries) but 
syntax is mostly different (i.e.: property binary coding of packet matching and actions). The 
translation is stateless because of very close semantics to OpenFlow. 

NetFGPA All OpenFlow actions realized in hardware are stored in hardware part of NetFPGA card. Their 
definitions have to be translated into form accepted by hardware implementation of modules for 
particular actions due to fast realization. 

ATCA OpenFlow actions are directly executed by the MIPS cores of the OCTEON network processor 
using the C-pipeline implementation of xDPd. 

DOCSIS Required to expose the real ports of the network as a unique port identifier in the virtualized 
model. The main functionality is translated a virtual port identifier into a certain DPID (Datapath 
Identifier) and the real port associated, and vice versa. 

GEPON The translation is on the control plane and this involves translating, for example, an OpenFlow 
message directed to a virtual port N to another OpenFlow message to send a packet to physical 
port 2 tagged with an specific  VLAN tag N. 

Layer0 switch OpenFlow messages are translated into device’s specific management commands. There is an 
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intermediate layer of abstraction between the resource model of the device and the OpenFlow 
abstraction. Translation is performed by the lower layer of the datapath. The translated 
commands are sent to the device using SNMP protocol. Also the OpenFlow protocol itself has 
been extended to accommodate actions related to optical switches (e.g. optical cross-connect) 
according to the Circuit Switch Addendum v0.3. 

 

3.3 Northbound Interfaces 

The northbound interface is an interface that allows a particular component of a network device to communicate with 

higher-level components. The HAL provides two northbound interfaces: OpenFlow and JSON-RPC. The former enables 

the communication between one or more OpenFlow controllers and the ALIEN devices and the latter is used to configure 

the Virtualization Agent from a Network Management System (NMS). 

 

Figure 3.7  HAL's northbound interfaces 

 

OpenFlow protocol 

The OpenFlow channel is the interface that connects each ALIEN device (and OpenFlow switches in general) to a 

controller. Through this interface, the controller configures and manages the device, receives events from the device, 

and sends packets out of the device. The OpenFlow channel is usually encrypted using TLS, but may be run directly over 

TCP. 

The HAL’s OpenFlow interface is provided by OF endpoints instances. Multiple instances are required when different 

versions of the protocol are used on the same device. On the other hand, multiple controllers using the same version of 

the protocol are handled by a single OF endpoint.  
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The current implementation of the HAL supports version v1.0 and v1.2 of the protocol. Support of v1.3.2 is under 

development. The specification of all versions of the OpenFlow protocol can be found on the Open Networking 

Foundation web site [OFSPEC]. 

Node Virtualization Management 

The VA slices the overall flowspace among many OF Controllers based on the configuration received from a NMS. The 

NMS communicates to the VA through the Virtualization Gateway (VG) sub-module. 

The management interface between VA and VG is implemented according to the JSON RPC 2.0 Spec found at [JSONRPC] 

where each request from the VG to the VA will be implemented with the following wire protocol: 

 

{ 

 "id":<string>, 

 "method":<command-name>, 

 "params":<input>, 

 "jsonrpc":"2.0" 

} 

Listing 3.1  Node Virtualization Management request message format 

 

On the opposite direction (from VA to VG), each reply will be implemented with the following wire protocol: 

 

{ 

 "id":<string>, 

 "result":<output>, 

 "error": { 

"code" : <error-code>, 

            "msg" : <msg>, 

"data" : <data> 

          }, 

 "jsonrpc":"2.0" 

} 

Listing 3.2 Node Virtualization Management response message format 

 

The error field will only be presented when needed. Table 3.4 defines the configuration API composed of set of functions 

allowing for slicing and flowspace management (see also the FlowVisor CLI toolfvctlmanual for more details on the single 

commands). 
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Table 3.4 Node Virtualization configuration API functions 

Command name Description 

add-slice Creates a new slice 

delete-slice Deletes a slice and removed all of the flowspace 
corresponding to the slice 

list-slices Displays the current configured slices 

list-slice-info Displays  slice's details (e.g. the controller URL) 

add-flowspace Creates a new rule and returns the new rule's ID 

remove-flowspace Removes rule with id=ID 

list-flowspace Lists the VA’s configured flow-based slice policy rules 

list-datapaths Displays the devices (e.g., switches) currently connected 
to the VG.  

3.4 Cross-Hardware Platform Interfaces  

This section describes common interfaces exposed by Hardware Specific Layer towards Cross-Hardware Platform Layer. 

Cross-Hardware Platform interfaces must be used both by OpenFlow agent and any hardware driver which would like to 

cooperate within the HAL framework. Cross-Hardware Platform interfaces are designed with goal for the minimization of 

efforts required to implement a new hardware driver and achieving OpenFlow control over that hardware platform. 

The ALIEN project identified two sets of API that could be used during hardware driver implementation (see Figure 3.8): 

 Abstract Forwarding API – more general API (comparing to the next one) which could be used for any hardware 

platform and it is only available option for close-box platforms 

 Pipeline Hardware API – more low-level API that requires availability of the fast access to network packets 

processed within the platform; it is the preferable option for programmable platforms because hardware driver 

doesn’t have to implement OpenFlow pipeline itself. 
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Figure 3.8  Cross-Hardware Platform interfaces for different ALIEN hardware 

The ALIEN project has provided the practical development of The Hardware Abstraction Layer in the form of [xDPd] and 

[ROFL] software projects. The implementation of Abstract Forwarding API and Pipeline Hardware API within xDPd/ROFL 

is done in the form of C language libraries where functions’ declarations are available in a set of C header files provided 

by ROFL library (in this way the interface definition is common for all platforms). The handlers API implementation is 

done in C source files that must be provided by each hardware driver. The details of both API implementation (i.e. 

function names and arguments) are presented in [D3.2]. 

The summary of Cross-Hardware Platform APIs usage is presented in Table 3.5. More information about HAL API usage 

can be found in deliverable D3.2, containing the high-level components specification of Hardware Specific Parts for ALIEN 

hardware platforms. 

Table 3.5 Cross-Hardware Platform API overview for different hardware driver based on xDPD/ROFL 

Platform Main hardware driver API Additional information 

DOCSIS Abstract Forwarding API Hardware Pipeline API not used because no access to packets. 

GEPON Abstract Forwarding API Hardware Pipeline API not used because no access to packets. 

Layer-0 switch Abstract Forwarding API Hardware Pipeline API not used because there is no packet. 

EZappliance Abstract Forwarding API The Hardware Pipeline API cannot be used natively because NP-3 
processor has very strict time constrains regarding packet processing 
time (in order words: NP-3 cannot store packets which is required by 
CHPL pipeline). However, Hardware Pipeline API is used as part of 
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“slow-path” software switch which is only supportive component (see 
D3.2 for more details 

NetFPGA Abstract Forwarding API Full hardware realization of the OF pipeline offers much higher 
performance thus CHPL pipeline with Hardware Pipeline API is used 
only  as part of “slow-path” software switch which is only supportive 
component (see D3.2 for more details). 

ATCA + Octeon Hardware Pipeline API Abstract Forwarding API is used internally within Cross-Hardware 
Platform Part. 

BroadcomTriumph21 Hardware Pipeline API Abstract Forwarding API is used internally within Cross-Hardware 
Platform Part. 

GNU/Linux x86 
software switch1 

Hardware Pipeline API Abstract Forwarding API is used internally within Cross-Hardware 
Platform Part. 

GNU/Linux + Intel 
DPDK software 
switch1 

Hardware Pipeline API Abstract Forwarding API is used internally within Cross-Hardware 
Platform Part. 

3.4.1 Abstract Forwarding API 

The Abstract Forwarding API (AFA) provides all the interfaces for management, configuration and events notification of 

the Hardware Specific Part instance and associated hardware platform. The management and configuration parts of the 

AFA interface must be implemented by a hardware driver and called by Cross-Hardware Platform Part (see Figure 3.9) 

but Notification part is provided by Cross-Hardware Platform part and invoked by a hardware driver. 

 

Figure 3.9  Abstract Forwarding API subsets and invocation model 

The management part of AFA is in charge of hardware driver initialization, network interface discovery, logical switch 

creation/destruction of, attaching/detaching of network interfaces to/from logical switches and administratively 

enabling/disabling network interfaces. Abstract Forwarding API will enable a hardware platform to be logically 

partitioned into several OpenFlow-controlled data path elements. The logical switches are parallel and independent 

                                                           

1Implementation originally made outside of the ALIEN project, but refined in ALIEN. 
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entities, each controlled by one instance of OpenFlow endpoint. Any switch port (network interface) can be attached to 

only one logical switch. 

The hardware driver, by using AFA interface, performs the entire network packet processing in OpenFlow pipeline within 

the network device (see 3.10). The AFA interface participates in the configuration of flow entries tables located within 

the hardware platform and in the configuration of the pipeline and network interfaces. Additionally, AFA allows for 

OpenFlow packet-in and packet-out events which allow for passing network packet between datapath implementation 

located in the device and OpenFlow controller. However, packet-in and packet-out operations are mostly not possible in 

close-box hardware platforms (i.e. DOCSIS, GEPON, Layer0 switch, etc.). 

 

Figure 3.10   Packet processing workflow with Abstract Forwarding API 

The detailed list of methods available within AFA interface is presented inTable 3.6. 

Table 3.6  Abstract Forwarding API methods 

AFA subset AFA  method Description 

Driver 
Management 

Init-driver Initializes hardware platform driver which covers all initial 
operations required for a particular hardware platform (e.g.: 
checking hardware accessibility, discovering hardware capabilities 
and resources, initialize device configuration as well ). Only 
initialized driver can be used. 

Destroy-driver Destroy driver state. Allows platform to be properly cleaned. 

Create-switch Instruct driver to create an OpenFlow logical switch. 

Get-switch Retrieve the detailed OpenFlow logical switch information. 

Destroy-switch Instructs the driver to destroy the OpenFlow logical switch. 
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Get-ports Retrieve/discover the list of all network ports of the hardware 
platform. 

Get-port Get detailed information about a network port. 

Enable-port Brings up a port. 

Disable-port Brings down a port. 

Attach-port-to-switch Attempts to attach a port to OpenFlow logical switch. 

Detach-port-from-switch Detaches a port from OpenFlow logical switch. 

Datapath 
configuration 

Set-port-drop Instructs driver to drop or not drop all incoming packets on the 
port. 

Set-port-forward Instructs driver to send or not send (output) packets on this port 
to the network link. 

Set-port-packet-in Instructs driver to generate or not generate packet-in events for 
the port. 

Set-port-advertise Instructs driver to modify port advertised flags representing 
features being advertised by the port. 

Set-pipeline-config Instructs driver to set pipeline configuration. 

Set-table-config Instructs driver to set table configuration. 

Packet-out Instructs driver to send a packet from controller out through the 
datapath.  

Add-flow Instructs driver to add new flow entry. 

Modify-flow Instructs driver to modify the existing flow entry. 

Delete-flow Instructs driver to delete the existing flow entry. 

Get-flow-stats Fetch the flow statistics on a given set of matches. 

Add-group Instructs driver to add a new group. 

Modify-group Instructs driver to modify group. 

Delete-group Instructs driver to delete group. 

Get-group-stats Instructs driver to fetch the group statistics. 

Nofitication Add-port Notifies that port was added within the platform. 

 Modify-port Notifies that port was modified (status changed) added within the 
platform. 

 Delete-port Notifies that port was removed within the platform. 

 Packet-in Handle packet from datapath to be send to controller. 

 Flow-removed Process a flow removed event coming from the datapath. 

 

The configuration part of AFA handles OpenFlow messages sent from OpenFlow controller to the datapath element. This 

interface must allow for setting, updating and removing flow entries within Hardware Specific Part, configuring pipeline, 

tables and switch ports properties and requesting statistics for flows, tables, ports or queue structures. Additionally, this 
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interface contains packet-out functionality which allows for driver to send a packet from controller out through the 

datapath. 

The notification part of AFA generates events related to adding/removing of network interfaces within the hardware 

platform, switch port attributes modifications or state, flow entry expiration and incoming of a packet for the controller. 

The information model used for Abstract Forwarding API is shown in Figure 3.11. The configuration part of this model is 

strictly based on OpenFlow specification. 

 

Figure 3.11  The most important objects of the Abstract Forwarding API information model 

3.4.2 Hardware Pipeline API 

The main goal of Hardware Pipeline API (HPA) is to minimize development efforts required to implement HAL hardware 

driver on programmable network platforms which allows to deploy and run general C/C++ code (e.g. Cavium Octeon, 

Broadcom Triumph2, Intel + DPKK, EZchip NPS processors). HPA is a low-level interface giving access to network packets 

operations, memory management, mutex and counter operations which are differently realized on different 

programmable platforms (see HPA invocation model in Figure 3.12). The main benefit of HPA interface usage is that 

hardware driver doesn’t have to implement OpenFlow pipeline itself and reuse Cross-Hardware Platform OpenFlow 

pipeline implementation. 
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Figure 3.12  Hardware Pipeline API subsets and invocation model 

In general, hardware platforms hardware driver can, at discretion, use HPA when: 

 processing packets via software pipeline (e.g. in software switches, certain network processors, or pack out 

events on ASICs or FPGAs) 

 Maintaining the OpenFlow state (e.g.: installed flows, flow expiration) using Cross-Hardware Platform pipeline 

deployed inside hardware driver implemented using AFA interface (regardless of its nature: hardware, software 

or hybrid). 

The Cross-Hardware Platform pipeline provides an implementation of an OpenFlow forwarding engine. It also includes a 

runtime sub-API, which is able to process abstract representations of real data packets across an OpenFlow pipeline. The 

pipeline platform interface exists to synchronize the abstract representation of packet in the pipeline with the actual 

packet in a network device (mangling the packet, like reading packets fields, modifying packet and apply forwarding 

decisions). The overview of packet processing with HPA interface is presented in Figure 3.13. 

 

Figure 3.13  Packet processing workflow with Hardware Pipeline API 

Additionally, Cross-Hardware Platform pipeline deployment on particular hardware platforms requires specific memory 

management and synchronization mechanisms. For this reason, the pipeline uses an additional set of methods for 

memory, mutex and counter operations platform interfaces to abstract these platform specific functions from the 

hardware-agnostic OpenFlow pipeline implementation. The detailed list of methods available in HPA interfaces is 

presented inTable 3.7. 
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Table 3.7 Pipeline Hardware API methods 

HPA subset HPA  method Description 

Packet operations Get-packet-size Getting the size of the packet processed within the hardware 
platform. 

Get-port-in Getting an identifier of the port where packet was received. 

Get-packet-field Getting specified header field value of OSI layers 2-4 protocols 
(802.3 Ethernet, ICMPv4, IPv4, MPLS and TCP/UDP) from a packet 
processed within the hardware platform. 

Set-packet-field Setting (overwriting) specified header field value of OSI layers 2-4 
protocols (802.3 Ethernet, ICMPv4, IPv4, MPLS and TCP/UDP) to a 
packet processed within the hardware platform. 

Copy-time-to-live Copy the TTL field between outermost and next-to-outermost 
header in a packet. 

Decrement-time-to-live Decrement the TTL field in a packet. 

Pop-tag Pop the outer-most shim header/tag (VLAN, MPLS and PPPoE) 
from a packet. 

Push-tag Push a newshim header/tag (VLAN, MPLS and PPPoE) onto a 
packet. 

Drop-packet Drop a packet. 

Output-packet Output a packet to the port. 

Memory 
management 

Allocate-memory Allocates a block of dynamic memory. 

Free-memory Frees a block of dynamic memory. 

Copy-memory Copies a content of memory block to another memory block. 

Move-memory Moves a content of memory block to another memory block. 

Set-memory Sets bytes of the block of memory to the specified value. 

Mutex & Counter 
atomic operations 

Init-mutex Allocate the memory within the hardware platform for the mutex 
and perform the mutex initialization. 

Destroy-mutex First destroy the mutex and then release the memory allocated. 

Lock-mutex Lock mutex. 

Unlock-mutex Unclock mutex. 

Increase-counter Performs an atomic increment of the counter 

Decrease-counter Performs an atomic decrement of the counter 

Nofitication Process-packet-in-pipeline Provide packet reference and processes a packet abstraction 
through the Openflow pipeline. 

 

Packet operation functions allow the pipeline to get information about the packet and manipulate the processed packet 

by the network device. Thanks to this part of API, the pipeline doesn’t have to pass the entire actual packet between 
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device and pipeline. Instead, the pipeline creates abstracted packet representation to be processed through pipeline 

tables. Packet operation functions should be implemented for each hardware driver. 

Memory allocation, mutex and counter functions provide a common interface for memory management, synchronization 

mechanisms and atomic counter operations for any programmable network processors. These functions should be 

implemented for each hardware platform. 

The notification interface is implemented by Cross-Hardware Platform pipeline and can be used by hardware driver to 

activate packet processing within OpenFlow pipeline. In order to active packet processing in the pipeline, a reference to 

packet stored in the device must be provided by hardware driver. 

4. Deploying new functionality and programming 
network elements 

OpenFlow is foreseen as a successful hardware abstraction, but during works in the ALIEN project, we have identified 

several limitations of current OpenFlow specifications [WHITEPAPER]. We believe capabilities of modern networking 

hardware are heavily restricted by the OpenFlow abstract device model and there is still a need for more elastic and 

powerful solution. In this chapter about datapath programmability concept, we would like to address the following 

limitations of OpenFlow:  

 Lack of autonomous capabilities (e.g. MAC learning required for generating ARP responses or PAT port allocation 

for every new o) with affects the performance of current OpenFlow solutions  

 Lack of possibility for generic packet modifications (e.g. adding/removing protocol headers which could be used, 

i.e., for generating ARP and ICMP responses) 

 Tight coupling to current network protocols which make it hard to introduce Future Internet revolutionary 

solutions (e.g. for Named Data Networking)  

 More and more network protocols are foreseen to be covered by OpenFlow control which results in a field 

explosion in OF specification (due to the fact that  big sets of protocol fields are very hard to be packed in the 

limited sizes of available TCAM memories). 

Taking into account all the above mentioned limitations and drawbacks of available technologies, we propose a new 

approach, which aims to: 

i. Expose full capabilities of network processors that are currently the most powerful packet processing hardware. 
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ii. Create a unified interface for managing and controlling of various types of networking hardware with very 

diverse capabilities. 

We would like to introduce Programmable Abstraction of Datapath (PAD), which is an enhancement of hardware 

abstraction for data plane elements. The PAD allows for programming of datapath behaviour using generic byte 

operations, defining protocol headers and providing function definitions. This solution includes also a system for 

reporting device capabilities in order to provide unified support for diversity of network devices. The PAD is not an 

extension or generalization of any existing solution, especially OpenFlow. The proposal elaborated in this chapter derives 

functionalities exposed by the abstraction mechanisms of the data plane hardware, not focusing on requirements 

exposed by the control plane, which continuously evolves, trying to meet overall objectives of the SDN paradigms. 

The ideal packet forwarding hardware characteristics have been introduced and explained in [RPF]. Our solution, as a 

hardware interface that completely hides details of a real hardware beneath, tries to follow these guidelines. The P4 

language [P4] and protocol oblivious forwarding [POF] both try to provide interface for datapath programmability but are 

focused on specific networking hardware (advanced ASICs and network processors respectively). OF-DPA [OF-PDA] has 

the narrowest scope implementing the abstraction mechanisms specifically designed for Broadcom Ethernet switches. 

Figure 4.1 presents possible the relations between PAD concept and solutions described in mentioned papers. 

 

Figure 4.1  The Programmable Abstraction of Datapath relation with other components 

The ALIEN Hardware Abstraction Layer (HAL) AFA interface aims to support diverse hardware types but it use OpenFlow 

based data model only. The AFA interface can utilize PAD solution in order to program OpenFlow model and operations 

into alien hardware platforms. However, we must emphasise that our PAD solution, presented in this chapter, is 

currently in very early stage of design and does not contain many functionalities which can be found in quite complex 

OpenFlow specifications like v1.3 or v1.4. 

4.1.1 Programmable Abstraction of Datapath (PAD) 

The forwarding abstraction is a model of network device’s processing mechanism. Programmable Abstraction of 

Datapath (PAD) comes from the fact that all network devices perform similar steps during packet processing: reading 

packet headers (parsing), making forwarding decisions based on a current configuration (searching), performing 
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necessary actions (modifying and forwarding). This observation has been used as an inspiration for the PAD network 

device abstraction presented on Figure 4.2.  

 

Figure 4.2  PAD forwarding element abstraction 

The PAD architecture is composed of several functional components, including ports, search engines, search structures, 

an execution engine and forwarding functions. Within the PAD, a packet may be processed several times through all 

these blocks. A packet received from the ingress port is bonded with metadata and passed to the search engine. After 

the successful search, a packet metadata and search result is passed to the execution engine. A search result contains a 

function name that will be executed on a packet. At the final stage the packet is passed to the egress port. In most cases, 

packet processing may run several passes through the PAD using a loopback logical port.  

Ports entities 

The port in the PAD can be either physical or logical. Physical ports represent physical interfaces of a specific network 

device. Logical ports are parts of a device abstraction model and are not co-related with any entity on a physical network 

device (however, particular PAD implementations can use some physical entities to implement this functionality). The 

loopback logical port is a unidirectional port that interconnects egress and ingress sides of the PAD and allows for multi 

pass packet processing. A controller’s logical port is a bidirectional port that allows for transmission of the processed 

packet to and from the controller through the northbound interface. Each port (physical or logical) can have a number of 

sub-ports (e.g. representing different channels on a single optical interface or different SSIDs on a wireless interface). 

Search engine 

The search engine is a logical module that performs search operations on search structures. The search key is created 

from parsed fields from a network packet and its metadata (i.e. an ingress port and a sub-port number). The search 

result is a name of the function defined in the execution engine and packet processing will start with a call of this 

function.  
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Each PAD implementation has to support at least one search structure. The number of supported search structures in the 

PAD model is not restricted. The search structure number 0 is always used for the first pass of the packet processing. 

Structure numbers for next passes are inserted in a packet metadata and sent together with a packet through the 

loopback port. In each pass only one search structure can be used. By default, each structure should be a ternary search 

structure (i.e. support masking of specific bits in a key). Some PAD implementations can additionally support a definition 

of exact match search structures (i.e. structures without masking possibility). Search structures are defined by their ID 

number and a key structure. The key can be composed of generic “fields” (e.g. an ingress port number, first 6 bytes and 4 

bytes starting from byte 12) or previously defined protocol fields (e.g. an ingress port number, a destination mac address, 

ethertype and vlan tag, if exists). Both possibilities can be combined in a single structure definition. 

Execution engine 

The execution engine executes (interprets) functions, which are sets of hardware independent instructions, and translate 

instructions into hardware-specific actions. Functions declared in execution engine can be called from the body of other 

functions. The first executed function for a given frame is the one passed from the search structure. A processed frame 

can be modified here (some devices, such as optical, could not support this feature). In most cases, the processing should 

finally result in a transmission of a processed data packet to the egress port.  

4.1.2 PAD API 

A northbound interface of the PAD allows controlling the network device behaviour. The PAD’s northbound interface 

functionalities can be classified into three functional groups: 

Datapath Capabilities - this group of operations allows for information retrieving about capabilities which are supported 

by a specific hardware. Each PAD instance can implement a certain set of the datapath functionalities. This part of the 

northbound interface will be used for getting information about search structures limitations and available instruction 

set before search structures are configured and functions declarations are installed. More information about datapath 

capabilities exposed by the PAD could be found in section 4.1.4. 

Datapath Management - this part of the interface allows for managing search structures, functions and defining network 

protocols. New search structures can be defined with a unique ID and a key description. The management part of this API 

defines rules of network device operations. The full configuration of a device will require several invocations of 

appropriate commands. However, the device should not be able to operate with incoherent and incomplete 

configuration. For this reason, all operations from this part of the API have to be committed in a single, atomic operation 

to take effect. The PAD implementation accumulates all changes, prepares the new configuration and loads it into the 

hardware after the commit command is executed with minimal possible interruption on the actual traffic processing. 

Some management operations, e.g. adding a new function can be theoretically performed without affecting the network 

device operation. The management part in the API could be extended with additional operations allowing such 

modifications without committing and stopping device. This additional set of operations is optional and supported only 

by certain PAD implementations. 

Datapath Control - This part of the PAD interface allow for adding and removing of entries in defined search structures. 

In most cases, first two parts of the API are used before the processing starts. i.e. the PAD user retrieves device 

capabilities, configures search structures, uploads functions and then starts the processing. The control part of the 
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interface, in opposite, is used during the entire time of the device operation, up to many thousands times per second 

depending on the application. 

The PAD API is designed to transparently handle network protocol and function definitions which decouple the PAD API 

with protocol and function specifications methods. The PAD API methods (see Table 4.1) use ‘char*’ parameters 

containing a string representation of protocol definitions.  

Table 4.1 PAD API methods for ANSI-C 

API group RAD API function Function description 

Datapath 
capabilities 

char* get_all_capablities()  

 

Returns a string containing list of supported capabilities 
in the datapath 

char* get_capability(char* 
capability_name)  

Returns a string containing a capability value or empty 
string when no such capability. 

Datapath 
management 

bool replace_protocols(char* 
protocols_spec) 

Returns true if network protocols specification where 
successfully installed in the datapath 

bool add_protocol(char* 
protocol_spec) 

Returns true if a network protocols where successfully 
updated with provided protocol  specification 

bool remove_protocol(char* 
protocol_name) 

Returns true if a given protocol knowledge was 
successfully removed from the datapath 

bool add_structure(uint8_t id, 
char* key, uint32_t size) 

Returns true if a search structure with a given key 
schema and total number of entries were allocated 
within the search engine. 

bool remove_structure(uint id) Returns true if a given search structure were deleted in 
the search engine. 

 bool commit_configuration() Return true if the PAD configuration is consistent  and 
the datapath was initialized. 

Datapath control bool add_entry(uint8_t 
structure_id, uint64_t key, 
uint64_t mask, char* result) 

Return true if key, mask and result values were added 
successfully as a search entry to a given search 
structure. If key already exist then entry result value is 
replaced. A result contains both forwarding function 
name as all parameters values required by the function. 

bool remove_entry(uint8_t 
structure_id, uint64_t key, 
uint64_t mask) 

Return true if a search entry containing given key and 
mask were removed from a given search structure. 

4.1.3 Forwarding functions and network protocols programming 

The PAD API requires the use of some kind of forwarding function declarations, protocol definitions programming. These 

two applications create very different requirements and therefore we propose the use of two different languages. 

The programming language is used to define operations performed by the execution engine. Sets of operations are 

loaded into the program memory as named functions. For each packet, one or more functions are executed.  
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The primary goal of this language is to allow developers to modify packet in any way including removing existing packet 

and creating a new one.  For this reason the language has to provide wide but specific capabilities that can be easily 

extended using supported capabilities mechanism. 

Key features of this language are: 

 Conditional statements and loops 

 Fixed-point variables 

 Arithmetical and logical operations 

 Bitwise operations 

 Remove, insert and modify any byte in the packet 

 Checksum computation 

 Send packet to output port 

 Add/delete an entry to/from search structure 

In case of implementations that support data plane network protocol definition capability, all defined protocol fields 

names are also available in the programming language and can be used within search keys and inside functions bodies. 

All fields that already exist in the packet header can be accessed as regular variables. New empty structure of the 

protocol header can be inserted into any place in the packet. 

The network protocol definition language allows programmers to introduce new data plane network protocols to a 

network device. Without this feature, the entire packet is seen only as an array of bytes that can be accessed only by its 

index. The definition of the protocol header consists of field names, order and sizes as well as information about protocol 

encapsulation. Protocol encapsulation explains how a given protocol header is linked to other headers, e.g. value 

‘0x86DD’ of “Type” field in Ethernet header means that the next header will be IPv6.  

This feature allows using specific header fields in search structures or functions definitions regardless of their actual 

position in the packet. For example, the IP destination address can be used in routing table search structure definition 

regardless of possibility of VLAN header occurrence that will change the location of the IP header in the packet. In 

implementations that do not support protocol definition, the programmer needs to consider all possible locations of 

given field in packet and handle them independently. The protocol definition language can be defined as a new solution 

or can be based on existing solutions like NetPDL [NetPDL] or P4 [P4] languages. 

Possible languages for both protocol and function definitions are still intensively considered. However we present an example use of 
them and the PAD API in Listing 4.1 Example use of PAD API in Python 

.  This code snippet presents example implementation of a simple label switching router using generic byte operations. 

Switching is based on a value of 4 byte long field inserted just after the Ethernet header and announced by the Ethertype 

value of ‘0x88b5’. The function call in the line 4 defines a search structure with the key of the length of 6 bytes composed 

from ethertype value (2 bytes) and 4 following bytes. The string variable defined in the line 8 contains a definition of a 

simple function that sends a packet to the output port given as a parameter. A value of port parameter is provided by 

search result. Line 12 adds the previously defined function to the execution engine. The function defined in the line 14 

removes the ether type and the tag value before invoking previously defined function ‘send_to’. The function defined in 

the line 21 adds a new tag header to the processed packet and sends them to the output port. The whole new 
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configuration is installed on the datapath with commit command in the line 29. Lines  31, 33 and 35 add entries to the 

defined search structure that respectively switches packets with the tag value ‘0x17’ to the port 7, switches packets with 

the tag value ‘0x18’ to the port 8 and removes tags from the packet with the tag value ‘0x11’ before sending it to the 

port 1. 

 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 

 
from pad import add_structure, add_function,  
                add_entry, commit_configuration 
 
add_structure(id=0,  
    key=“””2 bytes from byte[12].bit[0], 
           4 bytes from byte[14].bit[0]”””) 
 
function = “”” 
    send_to(port){ 
        send_to_physical(port); 
    }””” 
add_function(definition=function) 
 
function = “”” 
    decapsulate_and_send(port){ 
        remove(from=byte[12].bit[0], length=6B); 
        send_to(port); 
    }””” 
add_function(definition=function) 
 

function = “”” 
    encapsulate_and_send(tag, port){ 
        insert(after=byte[12].bit[0], value=0x88b5);  
        insert(after=byte[14].bit[0], value=tag); 
        send_to(port); 
    }””” 
add_function(definition=function) 
 

commit_configuration() 
 
add_entry(structure_id=0, key=0x88b500000017,      
          mask=0xffffffffffff, result=”send_to(7)“) 
add_entry(structure_id=0, key=0x88b500000018,  
          mask=0xffffffffffff, result=”send_to(8)“) 
add_entry(structure_id=0, key=0x88b500000011,  
          mask=0xffffffffff, result=”decapsulate_and_send(1)“) 
 

Listing 4.1 Example use of PAD API in Python 

4.1.4 Device capabilities 

Different network devices support different capabilities. Not all of hardware platforms allow manipulating forwarded 

frames and packets. In particular optical devices allow only circuit switching in the forwarding plane. Narrow set of 

network devices mostly based on network processors and programmable entities like FPGAs enable an access to the 

hardware datapath through a standardized API. Heterogeneity in the area of hardware with a diversified nature of the 

forwarding paradigm causes problems with a definition of the unified abstraction for all types of network devices [D3.1]. 
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The PAD which exposes capabilities of different hardware platforms makes the concept of hardware abstraction more 

general and unified. The possibility of using only one chosen part of PAD functionality ensures elasticity of the presented 

solution. Each physical device is expected to support only a part of PAD’s functionalities that is appropriate for the 

device.  A well-defined system of supported capabilities will allow implementing the PAD on top of optical switches as 

well as network processor appliances without limiting their capabilities. 

The key parameters included in capabilities definition: 

 Maximal number of search structures 

 Maximal length of a key in search structure 

 Support for exact matches 

 Supported instruction sets 

 Support for protocol definitions  

For example an optical switch can be presented by the following capabilities (because of the nature of the traffic 

forwarding at the optical level): 

 Only metadata in search structure key (without direct access to frame) 

 Sending the frame to port (without frame modification) 

 Dropping the frame 

Programmable Ethernet switches with full access to the frame support: 

 Compound keys in search structure enable matching to different frame header fields as well as frame metadata 

with counters, ingress port identification etc. 

 Sending the frame to port  

 Modifications of the frame 

 Dropping the frame 

In the case of closed platforms or platforms with limited access to datapath, it is possible to implement the PAD model 

which uses an available management interface to the device only (e.g. CLI, SNMP). Because of different capabilities of 

network devices not all functions in execution engine will be installed in the PAD as well as entries in search structures 

will be adjusted to supported device capabilities. 

4.2 PAD summary 

The PAD internal architecture presented 4.1.1 should not be considered as complete a set of software modules for 

implementation on each hardware platform. Each implementation will provide a functional equivalent of presented 

abstraction using the software architecture suitable for the given hardware platform. The presented solution can be seen 

as a primary interface for all interactions with datapath of hardware devices that will implement it. As an open hardware 

abstraction layer that can be used by local control plane processes as well as by remote network controllers using 

middleware protocols. 
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OpenFlow, the most popular SDN protocol, can be implemented on top of the PAD as a middleware for compatibility 

with existing controllers. Such device configuration will present to the controller only functionalities supported by OF, 

but by using standardized hardware interface will be open for replacing OpenFlow implementation  with a new one,  

overcoming current limitation of the OF protocol. 

The only locally available PAD API requires a middleware protocol to be used by a remote network controller; however it 

can be also used by local control software (not necessarily an SDN-based solution).  In such configuration the PAD can be 

used as a hardware abstraction layer for the implementation of legacy network protocols like STP or OSPF. 

The PAD has been designed with ease of use in mind, but still is relatively easy to implement on most of hardware 

architectures. The PAD architecture can be directly converted into software modules which makes implementation 

straight forward on C language programmed network processor platforms like Cavium Octeon, Broadcom XLS/XLR/XLP or 

x86 supported by Intel DPDK. On EZchip NP based devices [EZchip] the code generated for parsers can be deployed in 

TOPparse and TOPsearch and can be used for all searches. Compiled actions can be deployed on TOPmodify and also 

partially in TOPresolve if additional instructions are needed. 

Some considerations have been made in this chapter regarding implementation of the PAD prototype model, but there 

are still open issues that should be solved. Some of them affect the language specification for a description of supported 

capabilities, the language specification for actions definitions, the PAD metadata definition, the detailed specification of 

an API to the PAD, prototype implementation and definition of protocol that will expose PAD API functionalities to 

remote users. 

The PAD architecture enables generic abstraction of different kind of network devices. The PAD model is not restricted 

only to Ethernet-based protocols. An opportunity to change the network device behaviour (also on the fly) based on a 

well-defined “network program” is a flexible solution which allows changing frames, packets or datagrams handling on 

the fly. The ability of fine-grained definition of the forwarding behaviour of network equipment gives new opportunities 

towards the SDN concept.  
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5. Summary and conclusions 

In this document we explained the HAL architecture for network devices, designed to provide a platform for third party 

users for their OpenFlow implementation. The abstraction architecture has been designed in a way to cover most 

network device platforms such as programmable hardware, transport network devices (optical or circuit switch) and 

closed platform with proprietary communication protocols such as GEPON. 

The ultimate goal for a hardware abstraction layer is to decouple the underlying hardware from control and 

programming interfaces on the northbound interfaces and create a cross-platform framework. Also, it should have a 

standard API which could be extended to support new hardware or features and supply a structured procedure for 

troubleshooting.  Comparing this ideal HAL to the one that has been described in this document, one can see that the 

diversity of technologies used in network device platforms and various data plane architectures does not allow to 

implement this ideal HAL. Nevertheless the benefits of such an approach is very evident. 

To compensate for these obstacles, the HAL in ALIEN project consists of two sub-layers: Cross-Hardware sub-layer which 

is in charge of implementing those components that do not rely on underlying hardware platform and Hardware Specific 

sub-layer which is in charge of implementing the components that are tightly coupled with underlying hardware 

platform.  Dividing the HAL into two sub-layers enables the abstraction to happen gradually which gives the ability for 

expansion for new features such as on-demand programmability without redesigning the HAL architecture and also 

backward support for old OpenFlow versions. 

Alternatively, an initial specification of Programmable Abstraction of Datapath (PAD) solution has been proposed to 

support on-demand protocol agnostic programmability of network devices. This solution proposes to use descriptive 

languages such as [NetPDL] or [P4] to introduce new protocols to the network device. 

In conclusion, the HAL proposed in the ALIEN project not only supports the conventional hardware platform switches but 

also provides a framework for other network hardware platforms which are not designed to support OpenFlow protocol 

natively.  
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7. Acronyms 

AFA: Abstracted Forwarding API 

API: Application Programming Interface 

CM: Cable Modem 

FPGA: Field Programmable Fate Gate Array  

HAL: Hardware Abstraction Layer 

HSP: Hardware Specific Part 

HPA: Hardware Pipeline API 

NMS: Network Management System 

NPU: Network Processing Unit 

PAD: Programmable Abstraction for Datapath 

ROADM: Reconfigurable Optical Add drop Module 

ROFL: Revised OpenFlow Library 

SDN: Software Defined Networking 

OF: OpenFlow 

TCAM: Ternary Content-Addressable Memory 

VA: Virtual Agent 

VG: Virtual Gateway 

xDPd: Extensible Data Path Daemon  

 

 


