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Abstract
This document describes the implementaƟon details of the Hardware AbstracƟon Layer (HAL) based on the design specifi-
caƟons provided by deliverable D2.2. It provides a precise mapping between the HAL specificaƟon and its implementaƟon
within the overall funcƟonal architecture of HAL. It also demonstrates the feasibility of the HAL architecture by elaborat-
ing its implementaƟon-level details for various hardware plaƞorms. In addiƟon, this document describes the process of
resource virtualizaƟon and opƟcal resource reservaƟon and control implementaƟon in ALIEN.
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D2.3 Report on ImplementaƟon of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

ExcecuƟve Summary
This document reports on the implementaƟon details of the ALIEN Hardware AbstracƟon Layer (HAL) based on the design
specificaƟons detailed in deliverable D2.2.

The main objecƟve of HAL is to realize OpenFlow capabiliƟes on network elements that do not have naƟve support
for OpenFlow and enable their integraƟon in an OpenFlow deployment, such as an SDN experimental facility. In order to
achieve this goal, the HAL architecture decouples the hardware-specific control and management logic, which is handled
in its Hardware Specific Layer, from the network node-abstracƟon logic which is implemented through the Cross-Hardware
Plaƞorm Layer. This decoupling fosters reusability for different HAL componentsmaking them readily applicable to a range of
hardware plaƞorms as this deliverable documents. In effect, this document demonstrates the feasibility of the purposedHAL
architecture by describing the implementaƟon-level details of the aforemenƟoned HAL sublayers for the targeted hardware
plaƞorms which include programmable network processors, general purpose packet processors, opƟcal switches, as well as
point to mulƟ-point devices.

The document briefly reviews theHAL architecture and its component layers, i.e., Cross-Hardware Plaƞorm Layer (CHPL)
and Hardware-Specific Layer (HSL). We then proceed to provide a precise mapping between the HAL specificaƟon (detailed
in deliverable D2.2) and its implementaƟon, poinƟng out in parƟcular how the soŌware developed in ALIEN contributes to
the overall implementaƟon of the funcƟonal architecture of HAL.

With respect to the implementaƟon of CHPL, ALIEN has taken advantage of the Revised OpenFlow Library (ROFL) which
provides a foundaƟon for the development of OpenFlow controllers and datapath elements, and the eXtensible DataPath
daemon (xDPd) which allows the development of plaƞorm-specific forwarding modules for a variety of devices. xDPD sup-
ports extensions through plug-in modules. Examples of plug-in modules in ALIEN include the virtualizaƟon agent, which
adds slicing funcƟonality, and NETCONF support for the HAL configuraƟon management interface. CHPL communicates
with HSL through a set APIs the implementaƟon details of which are also presented in this document.

The implementaƟon of HSL is, of course, hardware plaƞorm dependent. The document explains the process of HSL
implementaƟon for the four idenƟfied target groups of hardware plaƞorms, namely X86-based packet processing devices,
programmable network processors, lightpath devices, and point-to-mulƟpoint devices. In parƟcular, this deliverable reports
and illustrates HSL implementaƟon for EZchip NP-3, Cavium Octeon, NetFPGA, ROADM, GEPON and DOCSIS.

Moreover, the document describes how the resource reservaƟon and virtualizaƟon mechanisms are implemented in
the HAL. Specifically, the HAL virtualizaƟon agent implements an OpenFlow-version agnosƟc slicing mechanism which aims
to avoid single points of failure with respect to virtualizaƟon as well as to support newer versions of the OpenFlow proto-
col. Finally, this document explains the implementaƟon of resource reservaƟon and control in opƟcal devices which have
different forwarding abstracƟons than the classic OpenFlow datapath.

This deliverable is public. We hope that it will aƩract the interest of the wider SDN R&D community working on Open-
Flow network implementaƟon.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014
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D2.3 Report on ImplementaƟon of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

1 IntroducƟon
OpenFlow is considered the leading control plane standard for SoŌware-Defined Networking (SDN) and has already played
a significant role in reshaping network infrastructures. However numerous provider domains are sƟll not equipped with a
proper framework that can facilitate the deployment of an OpenFlow-based control plane on legacy network elements. In
addiƟon, considering the mulƟtude of network devices and plaƞorms to be supported, some vendors have taken a more
cauƟous approach, thereby indicaƟng a degree of hesitaƟon to addOpenFlow funcƟonality on their own (legacy) equipment.
Such issues hinder the migraƟon of today’s networks to future SDN-enabled networks. The ALIEN Hardware AbstracƟon
Layer (HAL) is designed specifically addresses these issues. HAL introduces a feasible approach for describing network device
capabiliƟes and controlling the forwarding behavior of all OpenFlow and non-OpenFlow capable hardware throughout a
network. HAL hides the hardware complexity as well as technology and vendor-specific features, thus presenƟng a unified
abstracƟon layer to an OpenFlow controller.

Next we provide a brief overview of HAL and its main components, which has been specified in detail in deliverable
D2.2 [7] and publicaƟons [9], [10].

1.1 HAL Architecture Overview
The main purpose of HAL is to make a legacy network device OpenFlow-compaƟble through a set of abstracƟons. This
approach allows operators, on the one hand, to extend their OpenFlow-based control plane to legacy (but valuable) infras-
tructure and, on the other hand, to network modern OpenFlow switches with non-OpenFlow capable devices in a seamless
manner.

Considering the large array of devices that can be supported by HAL, the architecture has been based on a modular de-
signwhich is extensible and compaƟble with heterogeneous network devices. Moreover by following such amodular design
approach the behavior of any plaƞorm can be modified and extended without compromising the overall HAL architecture.
It also makes HAL’s implementaƟon easier and faster for similar network plaƞorms by exploiƟng module reusability.

A key design choice for HAL is to decouple the hardware-specific control and management logic from the network node
abstracƟon. This decoupling allowsHAL to hide the device complexity aswell as the technology- and vendor-specific features
from the control plane logic. Figure 1.1 illustrates the high-level HAL funcƟonal architecture where the decoupling has been
achieved through a split into two disƟnct sub-layers, namely, the Cross-Hardware Plaƞorm Layer (CHPL) and the Hardware-
Specific Layer (HSL). The former is responsible for node abstracƟon, virtualizaƟon and communicaƟon mechanisms. The
laƩer takes care of discovering the parƟcular hardware plaƞorm and performing all required configuraƟon using hardware-
specific modules. The two sub-layers communicate with each other through one of two interfaces, namely the Abstract
Forwarding API and the Hardware Pipeline API depending on the type of the network device.

HAL provides two northbound interfaces to enable the communicaƟon between OpenFlow controller(s) and the de-
vices, and to configure the VirtualizaƟon Agent via a Network Management System (NMS). The enƟƟes represented by
"Network Control" and "Network Management" in Figure 1.1 employ the two northbound interfaces.

1.1.1 Cross-Hardware Plaƞorm Layer

The Cross-Hardware Plaƞorm Layer (CHPL), illustrated in Figure 1.2, is the hardware-agnosƟc soŌware component which
is common across all network devices supported by HAL. It comprises several independent modules responsible for device
management (e.g., configuraƟon of underlying device with desired parameters), monitoring (e.g., geƫng noƟfied about
events like status changes of ports on device), and control. The OpenFlow Endpoint in CHPL encapsulates all necessary
control plane funcƟonaliƟes, maintains the connecƟons with the OpenFlow controller(s), andmanages the forwarding state
all the way to the plaƞorm drivers.

On the management plane, CHPL presents a unified abstracƟon of the physical plaƞorm (physical ports, virtual ports,
tunnels, etc.) to plugin modules hosted by a plug-in manager. This enables various plug-in modules to perform a variety
of management-related operaƟons, such as configuraƟon. Examples of plugin modules include a NETCONF or OF-CONFIG

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014
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Figure 1.1: High level funcƟonal architecture of HAL

agent, a file-based configuraƟon reader, and a VirtualizaƟon Agent (VA). The VA, as the name implies, adds resource virtual-
izaƟon features to the plaƞorm like a FlowVisor, such as, for instance slicing the device to be shared among mulƟple users.
The main VA objecƟve is to allow mulƟple users with simultaneous access to the same physical substrate without interfer-
ence. VA interacts with the OpenFlow endpoint to perform flowspace slicing operaƟons. It applies the slicing policies to the
OpenFlow messages sent by the controller to the switch in a protocol-version agnosƟc way.

Figure 1.2: High-level schemaƟc of Cross-Hardware Plaƞorm Layer

The OpenFlow Pipeline is an opƟonal soŌware component of CHPL that may be employed to implement the OpenFlow
table(s) in the sub-layer as illustrated in Figure 1.3. It can also be noƟced in this figure that the OpenFlow Endpoint and the
OpenFlow Pipeline use the Abstract Forwarding API (AFA) for their communicaƟon. The same API is also used by OpenFlow
Endpoint to communicate with the Hardware Specific Layer where it provides interfaces for management, configuraƟon and
receiving event noƟficaƟons.

1.1.2 Hardware Specific Layer

TheHardware Specific Layer (HSL) addresses the diversity of network plaƞorms and their communicaƟon protocols. Through
HSL we can overcome the complexity of implemenƟng the OpenFlow protocol on different hardware plaƞorms. In the real

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

9



DR
AF
T
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Figure 1.3: OpenFlow enƟƟes and interfaces within the Cross-Hardware Plaƞorm Layer

world, every network element or plaƞorm comes with its own protocol or API for communicaƟng, controlling andmanaging
the underlying system. Such APIs are oŌen proprietary and closed to the research community. In HAL, HSL is responsible for
hiding the complexity and heterogeneity of the underlying hardware control for message handling and providing a unified
and feature rich interface in its northbound for the upper layer, i.e., the Cross-Hardware Plaƞorm Layer. In pracƟce, HSL
must deal with different implementaƟons for each hardware plaƞorm. This layer has three key modules:

1. Discovery – Collects the informaƟon required to iniƟalize CHPL, e.g., a list of devices working together as a single
hardware plaƞorm instance and controlled by a single OpenFlow agent instance, available network ports and their
characterisƟcs such as, for example, transmission technology, transmission speed etc.

1. OrchestraƟon – Sends configuraƟon and control commands to all hardware components of the device that must be
engaged in request handling. OrchestraƟon also handles errors such as configuraƟon failures.

1. TranslaƟon – Translates data and acƟon models used in CHPL (mostly OpenFlow-based) to the device-specific proto-
col syntax and semanƟcs, and vice versa.

HSL supports the Hardware Pipeline API (HPA) to interface with CHPL which can be employed, for example, to reuse the
CHPL OpenFlow pipeline implementaƟon. This facilitates, for instance, the implementaƟon of the HAL hardware driver for
programmable network plaƞorms.

HAL has been implemented and is in acƟve use over a variety of programmable and closed-box hardware as illustrated
in Figure 1.4. The Figure also indicates the demarcaƟon points for AFA and HPA. In the following secƟon, a detailed account
of HAL implementaƟon parƟculars for various types of hardware plaƞorms is provided.

1.2 SoŌware Development in ALIEN
We conclude this short overview of the ALIEN with a few pointers to online repositories for soŌware that was developed in
ALIEN and relates to this report.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014
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Figure 1.4: HAL implementaƟon over different hardware plaƞorms

Most of the implementaƟon work described in this document has been made available publicly in the form of open
source soŌware packages available to the research community. For example, the list of soŌware provided under theMozilla
Public License 2.0 includes:

1. ROFL, the Revised OpenFlow Library, which is a set of libraries for building mulƟ-version OpenFlow Controllers and
Datapath elements. InformaƟon and soŌware repository for ROLF can be found at http://www.roflibs.org.

2. xDPd, the eXtensible DataPath daemon, a framework built on ROFL for developing OpenFlow/SDN datapath ele-
ments and designed to be easily extended with the support of new forwarding devices and plaƞorms, new Open-
Flow versions and extensions. Further informaƟon as well as the soŌware repository for xDPD is available at http:
//www.xdpd.org.

3. The xDPd-VirtualizaƟon plugin is a module that adds virtualizaƟon capabiliƟes to xDPd. The github repository for
this module is available at https://github.com/fp7-alien/xDPd-Virtualization.

4. xCPd, the eXtensible Control Path daemon, a framework that allows intercepƟon of OpenFlow control messages
to allow access networks to masquerade as distributed switches using tagging. Source code available at https:
//github.com/richardclegg/xcpd

1.3 Deliverable Outline
The remainder of this deliverable is organized as follows. SecƟon 2 presents CHPL, starƟng with a brief summary of the
ROFL and xDPd implementaƟons. Next, we summarize the implementaƟon of slicer implemented in ALIEN as an xDPd
plugin followed by a presentaƟon of the HAL APIs. SecƟon 3 presents implementaƟon details for HSL on four categories
of devices, namely, (a) X86-based packet processing devices, (b) programmable network processors, (c) lightpath devices,
and (d) point to mulƟ-point devices. SecƟon 4 presents implementaƟon details about the reservaƟon and virtualizaƟon of
resources for ALIEN devices. Finally, SecƟon 5 summarizes and concludes the deliverable.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
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2 Cross-Hardware Plaƞorm Layer ImplementaƟon
As menƟoned earlier, the Cross-Hardware Plaƞorm Layer (CHPL) is the hardware-agnosƟc soŌware component which is
common across all network devices supported by HAL. In this secƟon we detail the CHPL implementaƟon starƟng the foun-
daƟon elements and concluding with the CHPL applicaƟon programming interfaces (APIs).

2.1 ROFL
The Revised OpenFlow Library [3] can be used to build OpenFlow control applicaƟons, controller frameworks, and data path
elements. In short, ROFL provides a tool box to build OpenFlow-enabled soŌware. Two of the most valuable tools in ROFL
are the OpenFlow Endpoints and the OpenFlow Pipeline described next.

2.1.1 OpenFlow Endpoints

ROFL OpenFlow Endpoints provide basic support for the OpenFlow protocol, which includes protocol parsers, messageman-
gling, and so on. In addiƟon, they map the OpenFlow protocol wire representaƟon to a set of C++ classes. Each OpenFlow
Endpoint can be used on the data or on the control plane. That is, a ROFL OpenFlow Endpoint can be incorporated either in
a datapath element or in an OpenFlow controller. RespecƟvely, the endpoint can handle the OpenFlow control connecƟon
to any controller or datapath element.

In pracƟce, an OpenFlow Endpoint hides the details of the respecƟve protocol version and provides a clean and easy-
to-use API to soŌware developers. Currently, ROFL supports three types of Endpoints, namely for OpenFlow 1.0, OpenFlow
1.2, and OpenFlow 1.3.

2.1.2 OpenFlow Pipeline

ROFL has been enhanced during the ALIEN project with building blocks for creaƟng datapath elements, most notably an
OpenFlow pipeline, that can be integrated into any hardware plaƞorm supporƟng ANSI C. The OpenFlow pipeline can be
used in different ways:

• as a data model of the forwarding plane of an OpenFlow switch

• as a data model and state manager library to maintain the state of the installed flowMod and groupMods entries,
associated Ɵmers, staƟsƟcs, and so on. This allows us to let the plaƞorm-specific code capture events (e.g. flow_mod
inserƟon, flow_mod removal), APIs to mangle ASIC or other device configuraƟon

• as a data model, state manager, and a soŌware OpenFlow packet processing library, using packet processing APIs to
process packets in soŌware or hybrid (i.e. hardware-cum-soŌware) OpenFlow datapath elements.

Furthermore, the ROFL OpenFlow Pipeline supports mulƟple logical switches on a single OpenFlow switch instance,
each running its own OpenFlow version (e.g. OpenFlow 1.0, 1.2 or 1.3). In the case of soŌware switches, in parƟcular,
specific matching algorithms (e.g. flowMod look-up) can be defined on a per table and per logical switch basis, such as, for
instance, L3 opƟmized matching.

2.2 xDPd
xDPdhas been further enhancedduring theALIENproject duraƟon as a user-space implementaƟonof anOpenFlowdatapath
element. It currently supports OpenFlow 1.0, 1.2, and 1.3 [8] and it is designed to run on mulƟple hardware plaƞorms.
Arguably, xDPd has a somewhat cleaner soŌware architecture than the OpenFlow Virtual switch (OVS). xDPd implements an
internal interface, namely the Abstract Forwarding API (AFA). In xDPd nomenclature, AFA is the API between the hardware-
independent Control and Management Module (CMM) and the hardware-dependent Plaƞorm Driver (see Figure 2.1).

With respect to implementaƟon and operaƟonal experience, xDPd is available on several hardware plaƞorms, includ-
ing: User-space GNU/Linux (x86-gnu-linux), GNU/Linux Intel DPDK (x86-dpdk), CaviumOcteon, Broadcom, EazyChip (EZchip
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Figure 2.1: xDPd general architecture

NP-3), and NetFPGA-10G; an up-to-date list is available online as well at http://xdpd.org/#platforms. Source code
availability for each of these plaƞorms may be subject to hardware vendor license and, as such, not all of plaƞorm drivers
can be open-sourced by the ALIEN partners.

As menƟoned earlier, OpenFlow pipeline implementaƟon for different hardware plaƞorms is greatly facilitated by the
availability of ROFL. One of the features of xDPd is the creaƟon of mulƟple Logical Switch Instances (LSIs). LSIs are created
either through a configuraƟon file which is processed at start up Ɵme, or dynamically through a configuraƟon interface.
Each LSI is bound to network interfaces. In the case of mulƟple LSIs, network interfaces have to be exclusively assigned to
one LSI only. This is a simple way of slicing and a first realizaƟon of a virtualizaƟon.

2.2.1 Control and Management Module

Figure 2.2: Control and Management Module of xDPd

The Control and Management Module (CMM) is the hardware-independent part of xDPd. CMM consists of a core
module that implements an OpenFlow-like API in C++, which abstracts over the pure OpenFlow in that it allows LSIs of
mulƟple protocol versions to run in parallel. In order to do so, CMM needs to bind the proper OpenFlow Endpoint version
to the LSI, perform sanity checks on the flowMods sent, and in general be prepared to handlemessages of mulƟple versions.
As an example, message numbers, protocol fields, and counter formats (32-bit to 64-bit) differ between versions, so there
needs to be a proper translaƟon where possible, and marking of messages where necessary.
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2.2.2 Plug-in Manager

The xDPd configuraƟon and management interfaces are exposed through the Plug-in Manager. As a result, xDPd can be
extended to provide further interfaces to configuraƟon and management enƟƟes. Table A.4 summarizes the interfaces
implemented by each plug-in.

2.2.3 Slicer

Slicing funcƟonaliƟes within xDPd are provided with a set of methods that form the so-called VirtualizaƟon Agent (VA). The
main objecƟve of the VirtualizaƟon Agent is to enable mulƟple controllers (which are likely to correspond to different exper-
imenters/tenants) to control the same physical substrate, which is composed of xDPd-enabled switches, without interfering
with each other. In its current implementaƟon, the flowspace slicing mechanism is OpenFlow protocol version agnosƟc
and, in principle, works with every field of the packet’s header.

Below we summarize the most important operaƟons that are performed by the VirtualizaƟon Agent:

• The VA checks the header of the packets against the slice configuraƟons and configures the desƟnaƟon controller
for the OpenFlow Endpoints.

• The VA intersects the matches of the flowMod messages coming from the controllers with the corresponding flows-
pace definiƟon. In the current implementaƟon, the VA sets the VLAN_ID to the value assigned to the slice.

• The VA checks if the acƟons contained in the flowMod and packetOut messages violate the slice’s definiƟon (e.g.
sending packets out to a port that is not part of the slice).

• The VA checks if the acƟons contained in the buckets of the groupMod messages violate the slice’s definiƟon (e.g.
sending packets out to a port that is not part of the slice).

Figure 2.3 illustrates the implementaƟon of the VA within the HAL architecture. In parƟcular, one instance of the
VA is created during the device start-up and is responsible for the correct flowspace slicing. The VA does not inspect the
OpenFlow protocol but leverages on the protocol-agnosƟc xDPd's internal structures to both select the correct controller
for switch-to-controller messages and to filter out the controller-to-switch messages that violate the slice definiƟons.

The slicing process is performed within the OpenFlow Endpoints by calling the methods exposed by the VA. These are
the labels MESSAGE ANALYSIS FILTER and SELECT SLICE in Figure 2.3. The process does not involve OpenFlowmessages, but
operates on protocol-agnosƟc structures such as of1x_acƟon_group_t and of1x_flow_entry_t; see also Table A.1. However,
the "newflow"messages are analyzed outside the endpoints. In parƟcular, this type of processing occurs in the xDPd Control
and Management Module, implemented in xdpd/cmm.cc, in order to avoid the OpenFlow protocol inspecƟon (see SELECT
CONTROLLER label in Figure 2.3).

The aforemenƟoned funcƟons are implemented within the xDPd code tree and are defined in the header files listed in
Table A.5. The files that are added in the configuraƟon plugin for reading and updaƟng the VirtualizaƟon Agent database
are listed in Table A.6. Moreover, the xDPd code files that have been enhanced during the ALIEN project duraƟon in order
to implement the VA funcƟons can be found in Table A.7.

Finally, Table A.1 reports the most relevant funcƟons used to implement the VirtualizaƟon Agent.

2.3 APIs
The HAL architecture is comprised of four main layers, (1) the Control and Management Layer, (2) the Cross-Hardware
Plaƞorm Layer (CHPL), (3) the Hardware Specfic Layer (HSL), and (4) the forwarding / network devices layer. These layers
communicate with one another using a set of well-defined interfaces. In this secƟon, the different interfaces of the HAL
architecture (i.e., NETCONF, AF API, and the Hardware Pipeline API) are described.
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Figure 2.3: The VirtualizaƟon Agent implementaƟon within the HAL architecture.

2.3.1 NETCONF

In theOpenFlowprotocol specificaƟon(s), several configuraƟon andmanagement requirements are included either explicitly
or implicitly as described in [OF-CONFIG]. These requirements include:

• connecƟon setup to the controller (e.g., the IP address of the controller, the port number, the transport protocol
used, either TLS or plain TCP)

• support for mulƟple controllers

• connecƟon interrupƟon handling (i.e., fail-over modes in case one of the controllers malfuncƟons)

• switch and controller cerƟficate configuraƟon for each controller that is configured to use TLS

• queue parameters configuraƟon such as min-rate, max-rate for queue traffic

• switch port configuraƟon

• capability discovery to describe the capabiliƟes of the OpenFlow logical switch, and

• configuraƟon of the switch datapath ID.

Using (staƟc) configuraƟon files to configure each device with the above configuraƟon parameters can be cumbersome
and has operaƟonal limitaƟons. NETCONF [13] can be employed to automate this process and therefore it is seen as a rea-
sonable alternaƟve to use for managing ALIEN devices at the same Ɵme and installing the above configuraƟon parameters.
As such, in order to reduce the complexity of the management tasks, a NETCONF extension/plugin is introduced in the HAL
architecture implementaƟon, as illustrated in Figure 2.4.
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Figure 2.4: NETCONF plugin within the HAL architecture

The main purpose of the NETCONF plugin is to provide ALIEN island administrators and users with a management
interface to configure the underlying ALIEN devices with several parameters, such as the OpenFlow controller IP address
and switch datapath IDs. For administrators to have management access over network devices, they should be provided
with a list of management commands that they can use to configure the underlying devices. For instance, administrators
can use a command line interface (CLI) to list the commands that are available. Taking the the OpenFlow management and
configuraƟon requirements menƟoned above as a baseline, the following commands could be included:

• list_capabiliƟes <dpid>

• list_ports <dpid>

• disable_port <dpid, portNo>

• list_logical_datpaths <dpid>

2.3.2 Abstract Forwarding API

The Abstract Forwarding API (AFA) provides all the interfaces for management, configuraƟon and events noƟficaƟon of the
Hardware Specific Layer instance for the associated hardware plaƞorm. The management and configuraƟon parts of the
AFA interface must be implemented by a hardware driver and called by the Cross-Hardware Plaƞorm Layer instance (see
Figure 2.5). The NoƟficaƟon part is provided by Cross-Hardware Plaƞorm Layer instance and invoked by a hardware driver.

AFA is implemented within ROFL as a set of C header files containing AFA API funcƟon declaraƟons as listed in Table
A.8. FuncƟons declared in these files must be used by hardware driver subproject created within the xDPd implementa-
Ɵon. Table A.2 contains a list of AFA abstract methods declared in the HAL specificaƟon [7] and corresponding funcƟon(s)
implementaƟons in ROFL. Table A.2 also updates informaƟon from the HSL specificaƟons document [6] containing the first
version of HAL AFA implementaƟon required for HSL specificaƟon and development. More informaƟon about AFA funcƟons
and required parameters could be found in [7] and in the ROFL source code repository.
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Figure 2.5: Abstract Forwarding API within HAL architecture and implementaƟon details

2.3.3 Hardware Pipeline API

Hardware Pipeline API (HPA) is a low-level interface providing access to network packet operaƟons, memory management,
mutex and counter operaƟons which are realized in different ways on different programmable plaƞorms (see Figure 2.6).
The main benefit of using the HPA interface is that the hardware driver does not need to implement the OpenFlow Pipeline
per se. Rather the hardware driver can reuse the CHPL OpenFlow Pipeline implementaƟon presented earlier in this sec-
Ɵon. This approach reduces significantly the overall development effort required to implement the HAL hardware driver on
programmable network plaƞorms such as Cavium Octeon, Broadcom Triumph2, Intel DPKK, and EZchip NPS processors.

Figure 2.6: Hardware Pipeline API subsets and invocaƟon model

HPA is implemented using ROFL as a set of C header files. The HPA funcƟon declaraƟons are listed in Table A.9. More-
over, the list of HPA abstractmethods introduced in theHAL specificaƟon [7] and corresponding funcƟon(s) implementaƟons
in ROFL can be found in Table A.2.

Table A.3 updates the informaƟon found in the earlier published HSL specificaƟon document [6], which presented the
first version of HAL Pipeline implementaƟon required for HSL specificaƟon and development. More informaƟon about HPA
funcƟons details and required parameters could be found in [7] and in the ROFL source code repository.
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3 Hardware-Specific Layer ImplementaƟon
In this secƟon, the HAL Hardware-Specific Layer is presented for four groups of network devices:

• X86-based packet processing devices -- This group comprises general purpose network devices that perform packet
handling in soŌware. This includes compuƟng plaƞorms from server boards to mini PCs like Raspberry Pi, Arduino,
and so on, which typically have at least two or more independent network interfaces to turn them into potenƟal
forwarding nodes.

• Programmable network processors -- This group refers to network devices which allow their data plane to be pro-
grammed to perform packet processing. For some network processors (e.g.: EZchip NP-3, CaviumOcteon, NetFPGA),
it is possible to implement the OpenFlow Pipeline directly into hardware.

• Lightpath devices -- Since the OpenFlow protocol is limited to an Ethernet-like abstracƟon, in the case of opƟcal de-
vices, such as reconfigurable opƟcal add-drop mulƟplexer (ROADM) systems, the abstracƟon layer must be adapted
to meet the OpenFlow extension requirements for supporƟng circuit-switched networking.

• Point to mulƟ-point access networks -- For devices such as those based on standards like Gigabit Passive OpƟcal
Network (GEPON) and Data Over Cable Service Interface SpecificaƟon (DOCSIS), with deployments based on "head"
and "tails" topologies, some kind of orchestraƟon is necessary for exposing several devices as a single OpenFlow-
enabled "device" through HAL.

Each of these four groups group has different constraints and imposes various implementaƟon challenges which have
been explained in detail in earlier deliverables [5] and [6]. As a reminder, deliverable [5] has disƟnguished five types of net-
work hardware themes, which are used in this secƟon in order to present HAL architecture implementaƟons for these types
of hardware plaƞorms. The Physically Reconfigurable Systems theme has no impact on HAL design and its implementaƟon
thus is not presented in this secƟon.

3.1 Packet Switching Devices
This subsecƟon discusses two types of packet switching devices that have been considered in ALIEN, namely network devices
based on the Intel x86 architecture and devices employing programmable network processors.

3.1.1 X86-based Packet Processing Devices

SDN has been earlier associated with datapath forwarding using soŌware switches typically running some Linux OS on a
commodity server or PC. In general, this sort of hardware features a small number of network interface cards (NICs) that
are aƩached via the PCI bus to the south bridge on a server mainboard. As most of these servers during the last decade
incorporated Intel or AMD (x86) CPUs, the implementaƟon of packet forwarding became essenƟal for this architecture. As
the frequency of an individual CPU core reached a limit of approximately 3.7GHz, some years ago the x86 architecturemoved
to mulƟ-core CPUs based on replicaƟons of older core layouts on a smaller chip surface, benefiƟng from the Ɵc-toc of large
CPU manufacturers (shrinking the masks before moving to a new architecture). At the same Ɵme, the PCI bus speed and
the south bridge itself became increasingly more of a boƩleneck for fast packet forwarding. Recent architectures therefore
connect directly PCI lanes to certain CPU cores. This is complemented by the Intel's DPDK, the Data Plane Development
Kit. This soŌware development kit replaces Linux kernel drivers for Ethernet cards with libraries that allow direct memory
access to the ring buffers on the NIC.

Recently, a number of soŌware switch implementaƟons added DPDK support (i.e. Open vSwitch, xDPd) and reported
significant speed-up of forwarding rates to reach line rates of 10 Gbit/s on low-cost CPU equipment like the Intel Atom
plaƞorm.

The drawback of DPDK, however, is that it works pracƟcally only on Intel CPUs andNICs, limiƟng its applicability. Netmap
[15] increases the number of supported network interface cards while pracƟcally allowing the samememory access without
the duplicated copy from the NIC to kernel space and then again to user space.
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MMAP (memory map) is the general version that circumvents one copy operaƟon between the kernel and user space
by allowing direct access from user space processes to the Rx/Tx ring buffers. The measured speed difference between the
DPDK andMMAP versions for xDPd during a recent comparison resulted in a factor of more than 5. Detailed documentaƟon
of these results will be included in the forthcoming deliverable D5.3.

3.1.2 Programmable Network Processors

Programmable Network Plaƞorms represent a set of network equipment containing a re-programmable hardware unit (NPU
or FPGA) that can be adapted to a wide range of network processing tasks (i.e. packet switching, rouƟng, network moni-
toring, firewall protecƟon, deep packet inspecƟon, load balancing, etc.). These plaƞorms allow for expressing packet pro-
cessing control/service logic, using a programming language, in form of compiled source code which can be implemented
indefinitely on a single hardware unit.

Programmable processors are ideal hardware plaƞorms for introducing and validaƟngnewnetworking concepts. To take
advantage of this possibility, in the ALIEN project, dynamic adaptaƟon of network node capabiliƟes has been invesƟgated
in order to introduce new protocols to a datapath element with new processing acƟons which later could be added to the
OpenFlow protocol acƟon set.

Currently, there are many programmable network plaƞorms available in the market produced by several vendors such
as EZchip, Marvell, Cavium, Broadcom, Freescale, PMC-Sierra, and Tilera. Each vendor provides programmable processors
using quite different processor architectures in terms of microcore types (i.e., general core like in CPU, task opƟmized core);
organizaƟon (e.g., homogenous cores loosely assigned to tasks, strict pipelines of heterogeneous cores); add-ons (i.e., hard-
ware accelerators for parsing, paƩern matching, cryptography, packet classificaƟon, querying, among others); and memory
accessibility (e.g., standard CPU cores with ASIC network enhancements, task opƟmized NPU cores). This heterogeneity of
network processors is a challenge when establishing common implementaƟon assumpƟons based on the HAL specificaƟon
design.

EZappliance Plaƞorm
The heart of the EZappliance plaƞorm [1] is the EZchip NP-3 network processor (see Figure 3.1), a fully programmable chip
which enables flexible parsing, classificaƟon, packet header manipulaƟon and switching of pass through packets. It is the
part of the implementaƟon stack where packet processing through the OpenFlow Pipeline should occur in order to take
advantage of the full performance of processor. Unfortunately, the CHPL pipeline for handling packet abstracƟons cannot
be reused as-is in this plaƞorm because the NP-3 processor has very strict Ɵme constrains for packet processing and cannot
store the packets anywhere inside the plaƞorm. For this reason, a new implementaƟon of the OpenFlow Pipeline for NP-3
task-opƟmized cores was developed from scratch using the EZchip assembly language.

TheNP-3 processor is accompaniedwith a standard CPU foreseen for the deployment of control andmanagement plane
funcƟonaliƟes. The standard CPU was used to deploy both CHPL and HSL. Since the CHPL pipeline is not used, HSL could be
controlled by CHPL through the AFA interface only.

The HSL for EZappliance devices supports discovery and translator funcƟonaliƟes. The discovery funcƟonality is based
on automaƟc retrieval of informaƟon about all data plane ports, along with the corresponding aƩributes and status. In
the case of EZappliance, which is a standalone device, topology discovery is not required (for the same reason, HSL for
EZappliance does not include the orchestrator funcƟonality).

Themost complex part of HSL is the implementaƟon of translaƟon funcƟonality which transforms OpenFlow-based AFA
messages intomemory structures located within the NP-3 network processor. The NP-3memory structures are accessed via
the EZdriver provided by EZchip. The semanƟcs used for the EZappliance memory structures is quite similar to OpenFlow,
i.e., the memory contains a structure with flow entries but the syntax is mostly different: proprietary binary encoding of
packet matching and acƟons. TranslaƟon in the HSL is stateless.

NetFPGA Cards
Similarly to NP-3, NetFPGA cards [2] can be treated as programmable packet processors. They have four 1 Gb/s Ethernet
interfaces (or 10Gb/s in a newer versions). Both card versions can work as separate network nodes, however, typically they
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Figure 3.1: HAL adaptaƟon for EZappliance network processor plaƞorm

are mounted to a PC and they are integrated with the operaƟonal system via PCI or PCIe bus. The program, which is running
in the FPGA chip, has to be prepared in Verilog or VHDL. Due to the specific architecture and technology, its performance is
very high and it is widely used by designers of different prototypes.

In ALIEN NetFPGA cards are used as a hardware plaƞorm. The OpenFlow Pipeline is almost fully implemented in the
NetFPGA logic which offers much beƩer performance characterisƟcs compared to using the CHPL pipeline that has to be
deployed in the PC operaƟng system as part of HSL. In the NetFGPA HAL realizaƟon (see Figure 3.2), the CHPL pipeline is
used as a full featured OpenFlow albeit slower implementaƟon which processes only the packets that cannot be handled
by the hardware pipeline due to OpenFlow missing features in the current hardware pipeline implementaƟon.

The CHPL for NetFPGA cards is placed in the PC operaƟng system and has a connecƟon with the network controller
using the OpenFlow protocol via the NIC of PC. The HSL for NetFPGA also realizes discovery and translaƟon funcƟons. The
translaƟon funcƟonality is responsible for recoding of OpenFlow flow entries into a binary representaƟon recognized by the
hardware OpenFlow pipeline in the NetFGPA card.

Proper control informaƟon (flowMods) are stored in the hardware chip of the NetFPGA card and all possible flow ac-
Ɵons (packet forwarding, dropping, etc.) are realized by the hardware chip. It is only the first few packets per each flow (or
flows) which cannot be served by the hardware pipeline that are handled in the soŌware realizaƟon of HSL.

Cavium Octeon
The Cavium OCTEON family offers a variety of MulƟ-CoreMIPS64 processor boards especially targeted for network process-
ing duƟes. With 1 to 48 cnMIPS cores on a single chip, depending on the model, and other hardware acceleraƟon units
(port I/O, cryptography, DFA, etc.), they are a highly versaƟle soŌware programmable network plaƞorm.

The architecture of the implementaƟon is as follows:

• There is a single MIPS core, called the management core, running a standard CAVIUM Linux OS. The management
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Figure 3.2: HAL adaptaƟon for NetFPGA cards

core is employed to run xDPd (CMM, HSL) and the specific OCTEON driver

• There is shared memory, allocated at boot Ɵme in the so-called bootmem area shared across the management core
and the rest of the I/O cores.

• Finally, the N-1 remaining cores are devoted to process packets. They run on bare-metal, that is, that is, in standalone
mode (Single ExecuƟve Standalone, SE-S) in OCTEON's terminology, which means that they run a specific compiled
binary program in single-threadmode, without any kind of operaƟng systemor thread context swappingwhatsoever.

The management core is in charge of dealing with the parƟcular configuraƟon of the fast path rules, so the OpenFlow
pipeline, while the remaining cores use this state to process packets conƟnuously (See Figure 3.3). Actual packet flow is
going through the SE-S cores exclusively, except in the case when there is no match in the FlowTable.

The interacƟon of the controller with the device is taking place via OpenFlow. The OpenFlow Endpoint is the one
implemented as part of ROFL in the CMM. Inside the OCTEON processor itself, another API is used to access the specific
funcƟons and registers of hardware accelerators. This API is called Simple ExecuƟve API (SE-API) or HAL in the OCTEON
Users’ Manual (not to be confused with the ALIEN-specified HAL). The Linux core implements a pipeline that is a logical
representaƟon of the SE-S cores, and no packet actually passes through this one, except Packet-outs for convenience.

3.2 Lightpath Devices
OpenFlow, as a control protocol, promotes the use of flows instead of packets as the most vital unit of control alongside
the separaƟon between control and data planes. The opƟcal domain, however, has long followed this approach since there
is a clear separaƟon of the control from the data plane. In addiƟon, the noƟon of packets does not even exist in this
domain. Instead, a lightpath, which can be considered as a flow, is the fundamental unit of informaƟon when establishing
a connecƟon from one opƟcal node to another. However, OpenFlow focuses mostly on packet switching and, originally
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Figure 3.3: RelaƟon between Linux core and SE-S cores in the OCTEON Plus implementaƟon

did not offer any support for circuit switches, though this has been addressed to some degree later through a number of
extensions proposed [4].

Lightpath devices are used mainly, but not limited to, in the core of the network to provide high-speed links between
transit nodes of the network. OpƟcal switch devices offer a number of benefits to the operators such as scalability (since
and they can switch large amounts of data with very low latency) and energy efficiency (compared to the power consumed
by an electronic switch device). The emerging convergence of opƟcal packet domains fostered by OpenFlow can enable
operators to saƟsfy the growing demands for reduced latency and large amount of bandwidth from the current and evolving
applicaƟons (e.g. 4K streaming, video on demand, etc.).

TheADVA FSP 3000 is a high-performanceWavelength-DivisionMulƟplexing (WDM) networking system for bidirecƟonal
transmission of opƟcal signals. The system uses a modular structure which enables a flexible upgrade of capacity and
funcƟonality according to network requirements. The transmission between the modules is opƟcal and passive, which
means that the device control is completely separated from the data plane.

As opposed to a packet switch, an OpenFlow-enabled circuit switch consists of a cross-connect table and an OpenFlow
channel to the controller. The cross-connect table maintains a list of entries with all connecƟons between the ports inside
the switch. The OpenFlow Endpoint is handled using the ROFL library, which has been enhanced to support the opƟcal
extensions to the protocol. the OpenFlow Pipeline funcƟonality is not supported by lightpath devices since there is no
noƟon of packets in the opƟcal domain and no packets can be buffered or forwarded to the controller.

As illustrated in Figure 3.4, in order to get the OpenFlow abstracƟon of the device the Simple Network Management
Protocol (SNMP) management interface is used. However, this interface first needs to be configured manually with a valid
IP address to enable remote access. SNMP communicaƟon (traps, get/set messages) provides all the informaƟon that can
be extracted from the network element, while the layer above is responsible for receiving and translaƟng from this pool
of resources the those that are required for the OpenFlow abstracƟon (OpenFlow Resources). The layers described above
compose the HSL of the ADVA network elements. On top of that the funcƟonality and the faciliƟes supplied by ROFL are
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employed to maintain the OpenFlow channel and handling messages received from the extended OpenFlow controller.

Figure 3.4: HAL adaptaƟon for ADVA FSP 3000 switch

3.3 Point-to-MulƟPoint Networks
In general, point-to-mulƟpoint devices consist of a "head end" which communicates with several "tail end" devices, usually
through broadcast means with some form of mulƟplexing which allows the devices to know which traffic is intended for
them. This approach is very common in access technologies. Within the ALIEN project, two types of hardware in this
category are used, namely the Gigabit Ethernet Passive OpƟcal Network (GEPON) and the Data Over Cable Service Interface
SpecificaƟon (DOCSIS). DescripƟons of both devices can be found in [5].

The Access Network (AN) provides the connecƟvity between the home/business customer's locaƟon (i.e. subscribers)
and the operator's premises. This part of the network is known as the lastmile and it is considered as the boƩleneck in terms
of bandwidth. It is also oŌen the most expensive part of an operator's network. There are several technologies currently
used in commercial deployments depending on the available media, such as xDLS (copper), DOCSIS (cable) or GPON (fiber).
In order to deploy the system in the most cost-effecƟve manner, this media is shared by a set of subscribers. As a result,
bandwidth sharing is one of the goals of any of those AN technologies. Regardless of the specific technology used, all these
systems can be abstracted as a point-to-mulƟpoint (i.e. operator-to-subscribers) device.

One of the main challenges of these systems is that they are so specific in nature (i.e. focus on the Access Network)
and technology that it is hard to integrate their control and management planes in a more generic framework, such as an
applicaƟon-oriented and mulƟ-access technology soluƟon. In this context, the SDN paradigm and OpenFlow are the tools
that enable this integraƟon by introducing a common abstracƟon for networking devices, i.e. the ALIEN-specified HAL. This
layer deals with specific interfaces and hides the dependence on the technology. In the end, a HAL-based AN is agnosƟc
with respect to the actual technology deployed.

In the following subsecƟon, we present an example of this proposal for a DOCSIS system, which exposes OpenFlow as
its northbound interface. By doing this, the whole system can be abstracted as a single OpenFlow device.
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3.3.1 DOCSIS Access Network

The DOCSIS plaƞorm, illustrated in Figure 3.5, comprises threemain elements: the CMTS, the cable, and the cable-modems
(CMs). The CMTS is the head-end and 'intelligent' part of the system, which determines the use of the shared media by the
CMs. The CMTS must be configured in the bridge mode (i.e. TLAN or L2VPN) to be compaƟble with OpenFlow abstracƟons.
The cable is the shared media (coaxial) between the CMTS and several CMs. Finally, the CMs are the tails of the system
located at the subscriber's locaƟon. Collocated with the CMs, it is customary to deploy a managed OpenFlow User Instance
(OUI) to implement some service related networking logic. In order to implement connecƟvity between any CMs in bridge
mode, an external device (i.e. aggregaƟon switch -AGS-) is needed adjacent to the CMTS.

Figure 3.5: HAL adaptaƟon for DOCSIS Access Network

Since theDOCSIS plaƞorm is closedwe cannot reprogram the devices, control is only possible through vendor-supported
standard interfaces. In principle, this limits the integraƟon of DOCSIS under an OpenFlow interface. However, by adding
the OUI and aggregaƟon switch in the picture (i.e. as helper boxes), we can orchestrate the whole system to overcome
these limitaƟons and implement a fully compaƟble soluƟon. As a result, the ALHINP (ALien HAL IntegraƟng Network Proxy)
performs the proper abstracƟon from the whole system by siƫng (in the control plane) between the set of network devices
and the OpenFlow controller. This proxy is based on AFA, since the actual data plane remains outside the DOCSIS proxy.

As previously menƟoned, the ALHINP resides on an external box logically located between the plaƞorm and the con-
troller and implements both layers of HAL: CHPL and HSL. In this implementaƟon, CHPL consists of the OpenFlow Endpoint
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using the AFA as its southbound interface. Therefore, CHPL interacts with the HSL through AFA.
HSL for DOCSIS plaƞorm implements the discovery, orchestraƟon and translator funcƟonaliƟes. The discovery compo-

nent provides informaƟon each Ɵme a new CM is connected to the system. As a consequence, ALHINP dynamically updates
the virtual ports exposed to the controller, since each CM is abstracted as a new virtual port of the virtual OpenFlow switch.
The orchestraƟon component enables the coordinaƟon of mulƟple hardware components (i.e. OUI, CMs, CMTS and AGS)
so they act as a single device.

All control plane interacƟons between the controller and the proxy must be handled to achieve a similar/emulated re-
sponse from the set of devices. In order to improve the modularity of the system the orchestrator assumes three domains:
OUI, AN and AGS. Each domain implements its own driver to interact with the target device via the available interface.
Moreover, by doing this separaƟon the proxy can be easily developed and the AN technology can be changed just by de-
veloping a new driver for it. Finally, the translaƟon component implements the logic to map the virtual ports (from a single
virtual DataPath IdenƟfier) to real ports and physical DataPath IdenƟfiers, and vice versa. This funcƟonality is implemented
in coordinaƟon with the orchestraƟon module and gets input from the discovery module.

ALHINP can be used as an example of how any other AN technology can be abstracted following a similar approach and
be exposed though an OpenFlow interface. By doing so, the AN can be controlled as any other OpenFlow resource, and even
more, any previously developed OpenFlow applicaƟon can run without any adaptaƟon. As next steps we are invesƟgaƟng
how the management of the shared media (e.g. the bandwidth assigned to each subscriber) can be exposed though the
OpenFlow interface of the proxy. The appropriate extensions are currently under development.

3.3.2 GEPON Access Network

Similarly to DOCSIS, GEPON has three main elements which can be considered analogous: the OLT (OpƟcal Line Terminal),
the spliƩer and the ONUs (OpƟcal Network Units); see Figure 3.6. OLT is the head end device that is the most intelligent
part of the system and is responsible for orchestraƟng the ONUs. The ONUs are usually situated in customer premises. Data
transfer between ONUs and OLTs is opƟcal. In a typical deployment, data between ONUs goes via a head-end switch outside
the OLT. The opƟcal part of the network is passive and all data from the OLT goes to all ONUs which share their Ɵme using
Ɵme division mulƟplexing.

As with DOCSIS, GEPON is proprietary/closed source equipment. A different approach was taken to that taken by the
DOCSIS implementaƟon although the two approaches are complementary. Instead of having the OUI boxes collocated with
the tail-end equipment, the GEPON HSL works with changes only at the head-end device. The key change is to enhance
the switch outside the OLT to be OpenFlow-enabled and to add a proxy device, known as eXtensible Control Path daemon
(xCPd). xCPd speaks OpenFlow northbound and southbound and pretends to be a large virtual switch with one port for the
OLT and one port for every ONU. XCPd translates these virtual ports to either the appropriate real port and, if appropriate,
a VLAN tag that is associated with the appropriate ONU. Where OpenFlow requirements cannot be met using just VLAN
tags, then xCPd communicates directly with the OLT via its management port. xCPd orchestrates the changes to the OLT
and the translaƟons of matches and acƟons to the lower-level OpenFlow switch. The downside is that because VLAN tags
are used between the OpenFlow switch and the OLT then those tags cannot be used elsewhere unless the device supports
QinQ (stacked VLAN tags) which the model at UCL does not.

xCPd is a generic framework that could be used to control any access network with the following requirements:

• all traffic between tail-end devices goes via a switch upstream from the head-end.

• the head-end device can route traffic via tags and untag them.

• the head-end device can tag packets from tail end devices.

For some OpenFlow funcƟonality then hardware-specific secƟons must be wriƩen that is parƟcular to the hardware in
quesƟon. This is the control path labelled MGMT in Figure 3.6. PorƟng to new access devices meeƟng the above require-
ments automaƟcally will achieve the majority of OpenFlow 1.0 funcƟonality. Port staƟsƟcs will not map correctly without
hardware-specific code being wriƩen for the hardware to be ported.
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Figure 3.6: HAL adaptaƟon for GEPON Access Network

4 Resource ReservaƟon and VirtualizaƟon
This secƟon summarizes the outcomes of the Task 2.4 development acƟviƟes focused on ReservaƟon and VirtualizaƟon of
Resources.

Resource reservaƟon refers to the characterizaƟon of resource types including interfaces, processing units, and the
flowspace. As a result, the extension of the OpenFlow data model is provided to expose such resources through the control
channel.

Resource VirtualizaƟon refers to the segmentaƟon of the available resources such as forwarding nodes and flowspace.
The outcome of the Resource VirtualizaƟon acƟviƟes within WP2 is the implementaƟon of a distributed and OpenFlow ver-
sion agnosƟc slicing mechanism as a component of the HAL. This component, called VirtualizaƟon Agent, tries to overcome
two of themain limitaƟons of other approaches like FlowVisor [14] and VeRTIGO [11] that are: Single Point of Failures (SPoF)
and lack of support for versions >= 1.1 of the OpenFlow protocol.

4.1 OpƟcal Resource ReservaƟon and Control
The OpenFlow protocol was iniƟally introduced to allow programmability in networks; however the iniƟal proposal took
into consideraƟon only the packet switches of the network. As opposed to the packet switch, an OpenFlow enabled circuit
switch consists of a cross-connect table instead of a matching packets table. This subsecƟon describes the changes needed
to be applied to the original Stanford implementaƟon in order to control the ADVA opƟcal ROADM network elements.
Amendments in the protocol, as expected, need to be applied both on the OpenFlow agent as well as the controller used
to control the device itself.
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The implementaƟon of the OpenFlow datapath for the ROADM network element is based on the circuit switching ex-
tensions ver. 0.3 [4]. These extensions are merged with the OpenFlow specificaƟon v1.0 and have been developed in a
way that it does not break the protocol structure size and fields. AddiƟonally to these extensions we have developed some
further extensions that are required for the ADVA ROADM network element to be controlled by OpenFlow.

In the following a short outline of the most important changes included in the OpenFlow addendum is provided though
readers interested to know more about the OpenFlow circuit extensions should refer to the original document [4]. First of
all, addiƟonal capabiliƟes have been added in the features reply message to accommodate the extra features of the opƟcal
switch. Also in the features reply message a new structure has been added to describe the physical ports (ofp_phy_cport) of
a circuit switch and some of the exisƟng padding bytes have been used to specify the number of circuit ports in the opƟcal
switch.

Moreover, there are some addiƟonal messages that have been defined to enable control of the opƟcal devices. OpƟcal
cross connecƟons are setup and torn down by the controller using the CFLOW_MOD message and some errors message
types have been added to inform the controller if something goes wrong. The CFLOW_MODmessage contains the so called
logical equivalent of ofp_match structure, the ofp_connect structurewhich describes the cross connecƟon inside the switch.
Also a CPORT_STATUS message has been added to allow the switch to inform the controller about changes in the state of
the physical circuit port.

In addiƟon to these extensions, we have uƟlized the flexibility OpenFlow provides by defining a number of extensions
using the OFPT_VENDOR (4) message type which is used as a stage is foreseen as a staging area for new protocol (experi-
menter) features. Vendor extension feature allows for extending the protocol without breaking the compaƟbility with the
base protocol specificaƟon.

The vendor OpenFlow message contains a field vendor aŌer the OpenFlow header which is the vendor id for the
device/vendor that this message has been implemented. A vendor code has also been defined for the ADVA ROADMs,
OOE_VENDOR_ID (0x41445641) to idenƟfy a set of messages that are specific for this device. Furthermore, a new header
was developed for this type of message:

struct ooe_header {
struct ofp_header header; // openflow header
uint32_t vendor; // vendor id
uint32_t type; // message type (OOE_ message type)
uint8_t data(0); // message payload

}

In addiƟon, a number of device specific messages and respecƟve codes were defined in order to idenƟfy them. The
purpose of these types will be explained in the following paragraphs.

enum ooe_type {
OOE_SWITCH_CONSTRAINTS_REQUEST,// switching constraints
OOE_SWITCH_CONSTRAINTS_REPLY, // switching constraints
OOE_POWER_EQ_REQUEST, // power equalization
OOE_POWER_EQ_REPLY, // power equalization

}

Switching constraints describe how the physical ports are connected with each other inside the ROADM. This relaƟon-
ship between ports comes from the internal network element configuraƟon. The device comprises a number of physical
cards connected with each other through fiber jumpers. The switching constraints map informs whether the opƟcal signal
can flow between parƟcular ports. However, it should be noted that switching constraints do not tell whether a setup is
really possible for a lightpath, even if these ports are physically connected. In order to be able to determine whether it is
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indeed able to do that, the features of the port must be consulted to check that the specified wavelength λ is supported by
both ports.

The ADVA ROADM cards require that the power equalizaƟon procedure to be triggered aŌer a cross-connecƟon is cre-
ated in the Wavelength SelecƟve Switch (WSS). Without power equalizaƟon, the ROADM card will be blocking the signal
flow. The extended OpenFlow controller can send a power equalizaƟon request to the OpenFlow switch and therefore in-
struct the switch to equalize the opƟcal signal power onmodules that require such procedure. Such equalizaƟon is triggered
by specifying ports and a wavelength. EqualizaƟon is triggered on modules that are located along the internal signal path
between these ports; the request is unidirecƟonal.

4.2 Resource VirtualizaƟon
Resource virtualizaƟon in HAL-enabled devices is achieved with the virtualizaƟon mechanisms implemented through the
VirtulizaƟon Agent (VA) and the Logical Switch Instances (LSIs). Other approaches like [14] or [11] do not provide the support
for OpenFlowprotocol versions beyond 1.0 and,moreover, introduce an addiƟonal layer on the control channel to obtain the
virtualizaƟon of the network resourceswhich represents a SPoF. The implemented framework aims at providing a distributed
virtualizaƟon architecture (no SPoFs) which is able to run on mulƟ-version OpenFlow switch network scenarios.

The VA, whose implementaƟon has been described in detail earlier in this deliverable 2.2.3, aims at virtualizing the
forwading plane with flowspace slicing techniques; see also Deliverable D2.2 [7] for more details.

LSIs allows the parƟƟons of the physical devices into several virtual switches. Each virtual switch is configured as a
subset of ports of the physical device and includes an endpoint that supports a given version of the OpenFlow protocol and
connects to a single OpenFlow controller.

While the objecƟve of the VA is to allow the forwarding plane to be shared amongmulƟple controllers, eachwith disƟnct
forwarding logic, the objecƟve of the LSIs is to logically extend the forwarding plane with more nodes than the number
actually available in the physical infrastructure. The combinaƟon of the twomechanisms permits each HAL-enabled physical
node to be split into mulƟple logical nodes and each logical node to be shared among different OpenFlow controllers.

The LSImanagement is located in theCross-Hardware PlaƞormLayer and implementedwith the class named "switch_manager"
in xdpd/management/switch_manager.h whose main methods are listed in Figure 4.1.

4.3 Resource DescripƟon
Datapath resource descripƟons are required both for network management and control systems in order to disƟnguish
different types of network nodes and their capabiliƟes. The knowledge about a resource is presented to the network users
or applicaƟons and used for the reservaƟon and control of some parts of the resource (or the whole resource). Resource
descripƟon can be also used internally in HAL, for example, for the translaƟon of OpenFlow requests into device-specific
configuraƟon. In ALIEN we employ different approaches for resource descripƟon as appropriate by the device type, as
explained in the remainder of this secƟon.

4.3.1 Resources in Programmable Packet Switching Devices

Programmable packet switching devices, such as network processors and CPU-based switches, have a basic device structure
(i.e. flow-tables, ports) which is coherent with the OpenFlow data model. However, the device programmability features
specific to each plaƞorm open a new aspect of datapath management. The node management system (could be performed
by the OpenFlow controller) may provide knowledge about the required data plane protocols.

Protocol descripƟon contains the header format and header placement within the packet and allows a device to locate,
parse, modify or remove such a protocol header during packet processing. An example of such descripƟon, using the P4
language [12] is presented below. The network headers descripƟon contains fields labels, posiƟon from the beginning of
the header and bit length meaning are presented here:

header ethernet {
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Figure 4.1: ImplementaƟon of the Logical Switch Instances management within the HAL architecture.

fields {
dst_addr : 48; // width in bits
src_addr : 48;
ethertype : 16;

}
}

header ipv4 {
fields {

__skip__ : 8; // not interpreted bits
dscp : 6;
ecn : 2;
__skip__ : 56;
src_ip : 32;
dst_ip : 32;
__skip__ : 16;
ip_proto : 8;

}
}
header udp {
field {

src_port : 16;
dst_port : 16;
__skip__ : 32;
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}
}
header vxlan {
field {

__skip__ : 32;
segment_id : 24;
__skip__ : 8;

}
}

Some header fields, which are not required during packet processing in the datapath, and are not used by flow entries,
are to be interpreted by the special direcƟve __skip__. The sequence of headers parsing within the packet is specified in
the following descripƟon:

parser ethernet {
switch(ethertype) { \\ header field based lookup

case 0x800: ipv4; \\ what is next header
}

}
parser ipv4 {
switch(ip_proto) {

case 0x11: udp;
}

}
parser udp {
switch(dst_port) {

case 0x12B5: vxlan;
}

}

As listed above, you can disƟnguish the next-parsed header by a specific value of any proper header field.
When these descripƟons are applied over a network node, then the node forwarding engine is capable of parsing and

processing based only on Ethernet, IPv4, UDP and VXLAN headers. Then, other header fields passed in flow entries are not
recognized and flow entries are skipped.

During the whole device life-Ɵme, one set of protocols may be replaced with a new set of protocols, depending on
the actual network device role in the network. The current implementaƟon of HAL does not support data plane protocol
knowledge management. Deliverable [D2.2] describes a proposiƟon of datapath architecture that could provide protocol
knowledge management capabiliƟes which may be implemented in the form of the early prototype Ɵll the end of the ALIEN
project.

4.3.2 Resources in Lightpath Devices

As described earlier in this deliverable, circuit switches are funcƟoning in a completely different way compared to the packet
processing devices, and thus require a new set of resource descripƟon. The ALIEN project has decided to use the proposed
extension to the OpenFlow protocol for circuit switched devices [4] that have been already included in the succeeding
versions of the protocol (i.e. v1.4). This extension was implemented in the HAL prototype for L0 switch (ADVA DWDM
system).

The structure used to describe a physical port in packet processing devices has been modified in order to be able to
describe a circuit switch port. At this point we should note the existence of peer_datapath_id and peer_port_no fields since
it is not possible in opƟcal networks to discover neighbors using LLDP frames.
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/*
* Circuit switch physical port description
*/
struct ofp_phy_cport {

uint16_t port_no;
uint8_t hw_addr[OFP_ETH_ALEN]; /* Ethernet address - 6-byte */
uint8_t name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated - 16 byte */

uint32_t config; /* Bitmap of OFPPC_* flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_* that describe features. All bits zeroed if
* unsupported or unavailable. */
uint32_t curr; /* Current features. */
uint32_t advertised; /* Features being advertised by the port. */
uint32_t supported; /* Features supported by the port. */
uint32_t peer; /* Features advertised by peer. */

uint32_t supp_sw_tdm_gran; /* TDM switching granularity OFPTSG_* flags */
uint16_t supp_swtype; /* Bitmap of switching type OFPST_* flags */
uint16_t peer_port_no; /* Discovered peer's switchport number */
uint64_t peer_datapath_id; /* Discovered peer's datapath id */
uint16_t num_bandwidth; /* Identifies number of bandwidth array elements */
uint8_t pad[6]; /* Align to 64 bits */
uint64_t bandwidth[0]; /* Bitmap of OFPCBL_* or OFPCBT_* flags */

};

The cfow_modmessage contains the so-called logical equivalent of the ofp_match structure and it is the message sent
to the circuit switch in order to modify its cross-connect table.

/* Circuit flow setup, modification and teardown (controller -> datapath) */
struct ofp_cflow_mod {

struct ofp_header header; /* Openflow header */
uint16_t command; /* one of OFPFC_* commands */
uint16_t hard_timeout; /* max time to connection tear down,

if 0 then explicit tear-down required */
uint8_t pad[4]; /* Align to 64 bits */
struct ofp_connect_ocs connect; /* 8B followed by variable length arrays */
struct ofp_action_header actions[0]; /* variable number of action */

};

The ofp_connect_ocs structure describes the cross-connected ports inside the switch:

/* Description of a cross-connection */

struct ofp_connect_ocs {
uint16_t wildcards; /* identifies ports to use below */
uint16_t num_components; /* identifies number of cross-connects

to be made - num array elements */
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uint8_t pad[4]; /* Align to 64 bits */

uint16_t in_port[0]; /* OFPP_* ports - real or virtual */
uint16_t out_port[0]; /* OFPP_* ports - real or virtual */

struct ofp_tdm_port in_tport[0]; /* Description of a TDM channel */
struct ofp_tdm_port out_tport[0];

struct ofp_wave_port in_wport[0]; /* Description of a Lambda channel */
struct ofp_wave_port out_wport[0];

};

Finally, a cport_statusmessage has been added to allow the switch to inform the controller about changes in the state
of the physical circuit port:

struct ofp_cport_status {
struct ofp_header header;
uint8_t reason; /* One of OFPPR_* */
uint8_t pad[7]; /* Align to 64 bits */
struct ofp_phy_cport desc; /* Circuit port description */

};

4.3.3 Resources in Point-to-MulƟpoint Devices

Point-to-mulƟpoint devices (GEPON and DOCSIS devices in the ALIEN project) are exposed to the network management
(and network control) as a OpenFlow network node, abstracƟng the whole access network.

4.3.3.1 Resources in DOCSIS Architecture

DEVICE MAP
Certain structures are required in order to maintain the coherence between all devices connected to the ALIEN-Hardware
INtegraƟon Proxy (ALHINP) and the virtualmodel exposed to theOpenFlow controller. As soon as a cablemodem is detected
in the network, ALHINP creates the corresponding structure for it. AŌer assigning the corresponding VLAN_VID, the rest of
the structure is filled with the parameters as soon as they are discovered (no relaƟonship between OUI and CM is required
in advance as they are dynamically detected by ALHINP).

struct device {
uint64_t MAC_OUI; /*MAC of the OUI*/
uint64_t DPID; /*DPID of the OUI*/
uint16_t vlan; /*Vlan provisioned over CMTS*/

};

std::map< uint64_t mac_CM, struct device> devicemap;

The devicemap stores for each cablemodem the corresponding OpenFlow Parameters and VLAN assigned by ALHINP
proxy. This map is dynamically filled when a connecƟon from OUI or CM is detected.

PORT STRUCTURES
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struct realport {
uint64_t DPID; /*DPID of the OUI*/
uint32_t realport_id; /*Real port ID at DPID*/

};

std::map< uint32_t virtualport, struct realport> portmap;

The portmap stores the ports enabled by the proxy, which are virtually exposed to the controller. For each virtualport
its corresponding realport and OUI_DPID is stored.

ALHINP CONFIGURATION
The configuraƟon of ALHINP,which is the component that orchestrates all the devices of the architecture,is stored in the
next structure, where network user-defined parameters are defined.

struct ALHINP {
uint64_t ALHINP_DPID; /*DPID of ALHINP exposed to the controller*/

std::string CTRL_IP; /*Controller IP*/
std::string CTRL_OF_VERSION; /*OF version of the controller */
std::string CTRL_PORT; /*OF Port */

std::string LISTEN_IP_AGS; /*OF AGS LISTENING IP */
std::string LISTEN_PORT_AGS; /*OF AGS LISTENING PORT */
uint32_t CMTS_PORT; /*Port where CMTS is attached*/
uint32_t DPS_PORT; /*Port where Provisioning system is attached*/
uint32_t ALHINP_PORT; /*Port for the ALHINP OUI connections*/

std::string LISTEN_IP_OUI; /*OF OUI listening IP */
std::string LISTEN_PORT_OUI; /*OF OUI listening Port */
uint32_t NETPORT; /*Port connected to the Cablemodem*/

std::string DPS_IP; /*DOCSIS Provisioning server IP */
std::string CMTS_IP; /*CMTS IP */

};

This structure describes the overall ALHINP configuraƟon parameters, given by the user, according to the architecture
setup.
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5 Summary
This document provides the implementaƟon details of Hardware AbstracƟon Layer (HAL). The HAL provides a plaƞorm
for OpenFlow protocol implementaƟon on non-OpenFlow capable network devices. Two sub-layers which comprise HAL
are Cross-Hardware Plaƞorm layer and Hardware-Specific layer. Based on the design specificaƟons developed within the
ALIEN project, this document provides an account of implemenƟng the two aforemenƟoned layers. The goal of Cross-
Hardware Plaƞorm layer is to provide a device abstracƟon using the services of Hardware-Specific layer which has to deal
with the underlying hardware plaƞormpeculiariƟes. The Cross-Hardware Plaƞorm layer implementaƟon is unanimous for all
hardware plaƞorms whichmakes it an ideal place to implement funcƟonaliƟes like networkmanagement and virtualizaƟon.
Moreover, it also helps achieve an OpenFlow version agnosƟc device abstracƟon. The implementaƟon of Hardware-Specific
layer has to be carried out for each underlying hardware plaƞorm and someƟmes it is even different from device to device
within the same network plaƞorm category. Therefore, depending on the hardware architecture of the underlying device,
the hardware-specific layer has to be implemented adapƟvely to offer the funcƟonality described in the specificaƟons.

The document describes the implementaƟon details of Cross-Hardware Plaƞorm layer and its plug-ins, i.e., NETCONF
and VirtualizaƟon Agent. In addiƟon, the experiences are shared for implemenƟng Hardware-Specific layer on most widely
used network device plaƞorms such as programmable hardware, transport network devices (opƟcal or circuit switch) and
closed plaƞorm with proprietary communicaƟon protocols such as GEPON. By achieving funcƟonal implementaƟons of
Hardware-Specific layer on the aforemenƟoned devices and its integraƟonwith the Cross-Hardware Plaƞorm layer to realize
OpenFlow capabiliƟes validates the feasibility of HAL architecture design and its specificaƟons.
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Acronyms
AFA: Abstracted Forwarding API
ALHINP: ALIEN Hardware INtegraƟon Proxy
API: ApplicaƟon Programming Interface
CM: Cable Modem
CMM: Control and Management Module
CHPL: Cross-Hardware Plaƞorm Layer
DOCSIS: Data Over Cable Service Interface SpecificaƟon
FPGA: Field Programmable Fate Gate Array
HAL: Hardware AbstracƟon Layer
HSL: Hardware Specific Layer
HSP: Hardware Specific Part
HPA: Hardware Pipeline API
LTE: Long Term EvoluƟon
NMS: Network Management System
NPU: Network Processing Unit
PAD: Programmable AbstracƟon for Datapath
ROADM: Reconfigurable OpƟcal Add drop Module
ROFL: Revised OpenFlow Library
SDN: SoŌware Defined Networking
OF: OpenFlow
TCAM: Ternary Content-Addressable Memory
TCP: Transmission Control Protocol
TLS: Transport Layer Security
VA: VirtualizaƟon Agent
VG: Virtual Gateway
VoD: Video on-Demand
xDPd: Extensible Data Path Daemon
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Appendix A

VA subset VA abstract method VA method implementaƟon in ROFL
Slice Port presence FuncƟon declaraƟon:

bool has_port(string port_name);
located in:
virtual-agent/slice.h

VirtualizaƟon
Agent

Is acƟve FuncƟon declaraƟon:
bool is_acƟve();
located in:
virtual-agent/virtualagent.h

Add slice FuncƟon declaraƟon:
void add_slice(slice∗ slice_to_add, bool connect);
located in:
virtual-agent/virtualagent.h

Add flowspace FuncƟon declaraƟon:
void add_flowspace(flowspace∗ flowspace_to_add);
located in:
virtual-agent/virtualagent.h

Add switch FuncƟon declaraƟon:
void add_switch(va_switch∗ switch_to_add);
located in:
virtual-agent/virtualagent.h

Check slice existence FuncƟon declaraƟon:
bool check_slice_existance(string slice_name, uint64_t dpid);
located in:
virtual-agent/virtualagent.h

Flow Entry Analysis
and modificaƟon

FuncƟon declaraƟon:
of1x_flow_entry_t∗ flow_entry_analysis(cofctl ∗ctl, of1x_flow_entry_t
∗entry, openflow_switch∗ sw );
located in:
virtual-agent/virtualagent.h

AcƟons analysis and
modificaƟon

FuncƟon declaraƟon:
of1x_acƟon_group_t∗ acƟon_analysis(cofctl ∗ctl, of1x_acƟon_group_t
∗acƟon_group, openflow_switch∗ sw );
located in:
virtual-agent/virtualagent.h

Group analysis and
modificaƟon

FuncƟon declaraƟon:
cofmsg_group_mod∗ group_mod_analysis(cofctl ∗ctl, cofmsg_group_mod
∗msg, openflow_switch∗ sw );
located in:
virtual-agent/virtualagent.h

Flowspace Stores the slices
flowspaces

FuncƟon declaraƟon:
struct flowspace;
located in:
virtual-agent/flowspace.h

VA Virtual
Switch

Check Flowspace
match

FuncƟon declaraƟon:
bool check_match(const of1x_packet_matches_t pkt,
std::list<flowspace_match_t∗> it);
located in:
virtual-agent/va_switch.h

VA Virtual
Switch

Compare match FuncƟon declaraƟon:
bool compare_match_flow(const of1x_packet_matches_t∗ pkt,
flowspace_match_t∗ it);
located in:
virtual-agent/va_switch.h

Table A.1: VirtualizaƟon Agent implementaƟon within the xDPd’s code
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AFA subset AFA abstract
method

AFA method implementaƟon in ROFL

Datapath
Management

Init-driver FuncƟon declaraƟon:
hal_result_t hal_driver_init (const char∗ extra_params);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Destroy-driver FuncƟon declaraƟon:
hal_result_t hal_driver_destroy (void);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Create-switch FuncƟon declaraƟon:
hal_result_t hal_driver_create_switch (char∗ name, uint64_t dpid,
of_version_t of_version, unsigned int num_of_tables, int∗ma_list);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Get-switch FuncƟon declaraƟon:
of_switch_snapshot_t∗ hal_driver_get_switch_snapshot_by_dpid(uint64_t
dpid);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Destroy-switch FuncƟon declaraƟon:
hal_result_t hal_driver_destroy_switch_by_dpid (uint64_t dpid);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Get-ports FuncƟon declaraƟon:
switch_port_name_list_t∗ hal_driver_get_all_port_names (void);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Get-port FuncƟon declaraƟons:
switch_port_snapshot_t∗ hal_driver_get_port_snapshot_by_name (const
char ∗name);
switch_port_snapshot_t∗ hal_driver_get_port_snapshot_by_num (uint64_t
dpid, unsigned int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Enable-port FuncƟon declaraƟons:
hal_result_t hal_driver_bring_port_up (const char∗ name);
hal_result_t hal_driver_bring_port_down_by_num (uint64_t dpid, unsigned
int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Datapath
Management

Disable-port FuncƟon declaraƟons:
hal_result_t hal_driver_bring_port_down (const char∗ name);
hal_result_t hal_driver_bring_port_down_by_num (uint64_t dpid, unsigned
int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

AƩach-port-to-
switch

FuncƟon declaraƟon:
hal_result_t hal_driver_aƩach_port_to_switch (uint64_t dpid, const char∗
name, unsigned int∗ port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Detach-port-from-
switch

'FuncƟon declaraƟons:'
hal_result_t hal_driver_detach_port_from_switch (uint64_t dpid, const char∗
name);
hal_result_t hal_driver_detach_port_from_switch_at_port_num (uint64_t
dpid, const unsigned int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
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Datapath
ConfiguraƟon

Set-port-drop FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_set_port_drop_received_config (uint64_t dpid,
unsigned int port_num, bool drop_received);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-port-forward FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_set_port_forward_config (uint64_t dpid,
unsigned int port_num, bool forward);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-port-packet-in FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_set_port_generate_packet_in_config (uint64_t
dpid, unsigned int port_num, bool generate_packet_in);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-port-adverƟse FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_set_port_adverƟse_config (uint64_t dpid,
unsigned int port_num, uint32_t adverƟse);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-pipeline-config FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_set_pipeline_config (uint64_t dpid, unsigned int
flags, uint16_t miss_send_len);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-table-config FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_set_table_config (uint64_t dpid, unsigned int
table_id, of1x_flow_table_miss_config_t config);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Datapath
ConfiguraƟon

Packet-out FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_process_packet_out (uint64_t dpid, uint32_t
buffer_id, uint32_t in_port, of1x_acƟon_group_t∗ acƟon_group, uint8_t∗
buffer, uint32_t buffer_size);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Add-flow FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_process_flow_mod_add (uint64_t dpid, uint8_t
table_id, of1x_flow_entry_t∗∗ flow_entry, uint32_t buffer_id, bool
check_overlap, bool reset_counts);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Modify-flow FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_process_flow_mod_modify (uint64_t dpid,
uint8_t table_id, of1x_flow_entry_t∗∗ flow_entry, uint32_t buffer_id,
of1x_flow_removal_strictness_t strictness, bool reset_counts);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Delete-flow FuncƟon declaraƟon:
hal_result_t hal_driver_of1x_process_flow_mod_delete (uint64_t dpid,
uint8_t table_id, of1x_flow_entry_t∗ flow_entry, uint32_t out_port, uint32_t
out_group, of1x_flow_removal_strictness_t strictness);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h
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Get-flow-stats FuncƟon declaraƟon:
of1x_stats_flow_msg_t∗ hal_driver_of1x_get_flow_stats (uint64_t dpid,
uint8_t table_id, uint32_t cookie, uint32_t cookie_mask, uint32_t out_port,
uint32_t out_group, of1x_match_group_t ∗const matches);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Add-group FuncƟon declaraƟon:
rofl_of1x_gm_result_t hal_driver_of1x_group_mod_add (uint64_t dpid,
of1x_group_type_t type, uint32_t id, of1x_bucket_list_t ∗∗buckets);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Modify-group FuncƟon declaraƟon:
rofl_of1x_gm_result_t hal_driver_of1x_group_mod_modify (uint64_t dpid,
of1x_group_type_t type, uint32_t id, of1x_bucket_list_t ∗∗buckets);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Delete-group FuncƟon declaraƟon:
rofl_of1x_gm_result_t hal_driver_of1x_group_mod_delete (uint64_t dpid,
uint32_t id);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Datapath
ConfiguraƟon

Get-group-stats FuncƟon declaraƟons:
of1x_stats_group_msg_t∗ hal_driver_of1x_get_group_stats (uint64_t dpid,
uint32_t id);
of1x_stats_group_msg_t∗ hal_driver_of1x_get_group_all_stats (uint64_t
dpid, uint32_t id);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

NoƟficaƟon

Add-port FuncƟon declaraƟon:
hal_result_t hal_cmm_noƟfy_port_add (switch_port_snapshot_t∗
port_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h

Modify-port FuncƟons declaraƟons:
hal_result_t hal_cmm_noƟfy_port_status_changed
(switch_port_snapshot_t∗ port_snapshot);
hal_result_t hal_cmm_noƟfy_monitoring_state_changed
(monitoring_snapshot_state_t∗monitoring_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h

Delete-port FuncƟons declaraƟon:
hal_result_t hal_cmm_noƟfy_port_delete (switch_port_snapshot_t∗
port_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h

Packet-in FuncƟons declaraƟon:
hal_result_t hal_cmm_process_of1x_packet_in (uint64_t dpid, uint8_t
table_id, uint8_t reason, uint32_t in_port, uint32_t buffer_id, uint8_t∗
pkt_buffer, uint32_t buf_len, uint16_t total_len, packet_matches_t∗
matches);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_cmm.h

Flow-removed FuncƟons declaraƟon:
hal_result_t hal_cmm_process_of1x_flow_removed (uint64_t dpid, uint8_t
reason, of1x_flow_entry_t∗ removed_flow_entry);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_cmm.h

Table A.2: Abstract Forwarding API implementaƟon within the ROFL
project
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HPA subset HPA abstract
method

HPA method implementaƟon in ROFL

Packet
operaƟons

Get-packet-size FuncƟon declaraƟon:
uint32_t plaƞorm_packet_get_size_bytes (datapacket_t ∗const pkt);
located in:
/plaƞorm/packet.h

Get-port-in FuncƟon declaraƟon:
uint32_t plaƞorm_packet_get_port_in (datapacket_t ∗const pkt);
located in:
/plaƞorm/packet.h

Packet
operaƟons

Get-packet-field FuncƟon declaraƟon:
uint64_t plaƞorm_packet_get_eth_src (datapacket_t ∗const pkt);
uint64_t plaƞorm_packet_get_eth_dst (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_eth_type (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_vlan_vid (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_vlan_pcp (datapacket_t ∗const pkt);
uint32_t plaƞorm_packet_get_mpls_label (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_mpls_tc (datapacket_t ∗const pkt);
bool plaƞorm_packet_get_mpls_bos (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_ip_proto (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_ip_ecn (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_ip_dscp (datapacket_t ∗const pkt);
uint32_t plaƞorm_packet_get_ipv4_src (datapacket_t ∗const pkt);
uint32_t plaƞorm_packet_get_ipv4_dst (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_tcp_src (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_tcp_dst (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_udp_src (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_udp_dst (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_icmpv4_type (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_icmpv4_code (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_pppoe_code (datapacket_t ∗const pkt);
uint8_t plaƞorm_packet_get_pppoe_type (datapacket_t ∗const pkt);
uint16_t plaƞorm_packet_get_pppoe_sid (datapacket_t ∗const pkt);
located in:
/plaƞorm/packet.h
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Packet
operaƟons

Set-packet-field FuncƟon declaraƟon:
void plaƞorm_packet_set_eth_src (datapacket_t∗ pkt, uint64_t eth_src);
void plaƞorm_packet_set_eth_dst (datapacket_t∗ pkt, uint64_t eth_dst);
void plaƞorm_packet_set_eth_type (datapacket_t∗ pkt, uint16_t eth_type);
void plaƞorm_packet_set_vlan_vid (datapacket_t∗ pkt, uint16_t vlan_vid);
void plaƞorm_packet_set_vlan_pcp (datapacket_t∗ pkt, uint8_t vlan_pcp);
void plaƞorm_packet_set_mpls_label (datapacket_t∗ pkt, uint32_t label);
void plaƞorm_packet_set_mpls_tc (datapacket_t∗ pkt, uint8_t tc);
void plaƞorm_packet_set_mpls_bos (datapacket_t∗ pkt, bool bos);
void plaƞorm_packet_set_ip_proto (datapacket_t∗ pkt, uint8_t ip_proto);
void plaƞorm_packet_set_ip_dscp (datapacket_t∗ pkt, uint8_t ip_dscp);
void plaƞorm_packet_set_ip_ecn (datapacket_t∗ pkt, uint8_t ip_ecn);
void plaƞorm_packet_set_ipv4_src (datapacket_t∗ pkt, uint32_t ip_src);
void plaƞorm_packet_set_ipv4_dst (datapacket_t∗ pkt, uint32_t ip_dst);
void plaƞorm_packet_set_tcp_src (datapacket_t∗ pkt, uint16_t tcp_src);
void plaƞorm_packet_set_tcp_dst (datapacket_t∗ pkt, uint16_t tcp_dst);
void plaƞorm_packet_set_udp_src (datapacket_t∗ pkt, uint16_t udp_src);
void plaƞorm_packet_set_udp_dst (datapacket_t∗ pkt, uint16_t udp_dst);
void plaƞorm_packet_set_icmpv4_type (datapacket_t∗ pkt, uint8_t type);
void plaƞorm_packet_set_icmpv4_code (datapacket_t∗ pkt, uint8_t code);
void plaƞorm_packet_set_pppoe_type (datapacket_t∗ pkt, uint8_t type);
void plaƞorm_packet_set_pppoe_code (datapacket_t∗ pkt, uint8_t code);
void plaƞorm_packet_set_pppoe_sid (datapacket_t∗ pkt, uint16_t sid);
located in:
/plaƞorm/packet.h

Copy-Ɵme-to-live FuncƟon declaraƟon:
void plaƞorm_packet_copy_Ʃl_out (datapacket_t∗ pkt);
located in:
/plaƞorm/packet.h

Decrement-Ɵme-to-
live

FuncƟon declaraƟon:
void plaƞorm_packet_dec_nw_Ʃl (datapacket_t∗ pkt);
located in:
/plaƞorm/packet.h

Packet
operaƟons

Pop-tag FuncƟon declaraƟon:
void plaƞorm_packet_pop_vlan (datapacket_t∗ pkt);
void plaƞorm_packet_pop_mpls (datapacket_t∗ pkt, uint16_t ether_type);
void plaƞorm_packet_pop_pppoe (datapacket_t∗ pkt, uint16_t ether_type);
located in:
/plaƞorm/packet.h

Push-tag FuncƟon declaraƟon:
void plaƞorm_packet_push_vlan (datapacket_t∗ pkt, uint16_t ether_type);
void plaƞorm_packet_push_mpls (datapacket_t∗ pkt, uint16_t ether_type);
void plaƞorm_packet_push_pppoe (datapacket_t∗ pkt, uint16_t ether_type);
located in:
/plaƞorm/packet.h

Drop-packet FuncƟon declaraƟon:
void plaƞorm_packet_drop (datapacket_t∗ pkt);
located in:
/plaƞorm/packet.h

Output-packet FuncƟon declaraƟon:
void plaƞorm_packet_output (datapacket_t∗ pkt, switch_port_t∗ port);
located in:
/plaƞorm/packet.h

Memory
management

Allocate-memory FuncƟon declaraƟon:
void∗ plaƞorm_malloc(size_t length);
located in:
/plaƞorm/memory.h
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Free-memory FuncƟon declaraƟon:
void plaƞorm_free(void∗ data);
located in:
/plaƞorm/memory.h

Copy-memory FuncƟon declaraƟon:
void∗ plaƞorm_memcpy (void∗ dst, const void∗ src, size_t length);
located in:
/plaƞorm/memory.h

Move-memory FuncƟon declaraƟon:
void∗ plaƞorm_memmove (void∗ dst, const void∗ src, size_t lengt);
located in:
/plaƞorm/memory.h

Set-memory FuncƟon declaraƟon:
void∗ plaƞorm_memset (void∗ src, int c, size_t length);
located in:
/plaƞorm/memory.h

Mutex &
Counter
atomic
operaƟons

Init-mutex FuncƟon declaraƟon:
plaƞorm_mutex_t∗ plaƞorm_mutex_init (void∗ params);
located in:
/plaƞorm/lock.h

Mutex &
Counter
atomic
operaƟons

Destroy-mutex FuncƟon declaraƟon:
void plaƞorm_mutex_destroy (plaƞorm_mutex_t∗mutex);
located in:
/plaƞorm/lock.h

Lock-mutex FuncƟon declaraƟon:
void plaƞorm_mutex_lock (plaƞorm_mutex_t∗mutex);
located in:
/plaƞorm/lock.h

Unlock-mutex FuncƟon declaraƟon:
void plaƞorm_mutex_unlock (plaƞorm_mutex_t∗mutex);
located in:
/plaƞorm/lock.h

Increase-counter FuncƟon declaraƟon:
void plaƞorm_atomic_inc32 (uint32_t∗ counter, plaƞorm_mutex_t∗mutex);
void plaƞorm_atomic_inc64 (uint64_t∗ counter, plaƞorm_mutex_t∗mutex);
located in:
/plaƞorm/atomic_operaƟons.h

Decrease-counter FuncƟon declaraƟon:
void plaƞorm_atomic_dec32 (uint32_t∗ counter, plaƞorm_mutex_t∗mutex);
void plaƞorm_atomic_dec64 (uint64_t∗ counter, plaƞorm_mutex_t∗mutex);
located in:
/plaƞorm/atomic_operaƟons.h

NoƟficaƟon Process-packet-in-
pipeline

FuncƟon declaraƟon:
void __of1x_process_packet_pipeline (const of_switch_t ∗sw, datapacket_t
∗const pkt);
void of1x_process_packet_out_pipeline (const of1x_switch_t ∗sw,
datapacket_t ∗const pkt, const of1x_acƟon_group_t∗ apply_acƟons_group);
located in:
/openflow/openflow1x/pipeline/of1x_pipeline_pp.h

Table A.3: Hardware Pipeline API implementaƟon within the ROFL
project
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