
DR
AF
T

Abstrac on Layer for Implementa on of Extensions in programmableNetworks

Collabora ve project co-funded by the European Commission within the Seventh Framework Programme

Grant agreement no: 317880
Project acronym: ALIEN
Project full tle: Abstrac on Layer for Implementa on of Extensions in programmable Networks
Project start date: 01/10/12
Project dura on: 24 months

Deliverable D2.3: Report on Implementa on of the Common Part of
an OpenFlow Datapath Element and the Extended FlowVisor

Due date: 31/05/2014
Submission date: 12/06/2014
Editor: Umar Toseef (EICT)
Internal reviewer: Reza Nejaba (UNIVBRIS)
Author list: Umar Toseef, Adel Zaalouk, Kostas Pen kousis (EICT), Artur Binczewski, Bar-

tosz Belter, Łukasz Ogrodowczyk, Iwo Olszewski, Damian Parniewicz (PSNC), Ha-
gen Woesner, Tobias Jungel (BISDN), Jon Ma as, Eduardo Jacob, Victor Fuentes
(UPV/EHU), Richard G. Clegg (UCL), Roberto Doriguzzi (Create-Net), Marek
Michalski, Remigiusz Rajewski, Mariusz Żal (PUT), Tasos Vlachogiannis (UNI-
VBRIS)

Dissemina on level

X� PU: Public
� PP: Restricted to other programme par cipants (including the Commission Services)
� RE: Restricted to a group specified by the consor um (including the Commission Services)
� CO: Confiden al, only for members of the consor um (including the Commission Services)

©Authors and their corresponding ins tu ons License: CC-BY-NCh p://crea vecommons.org/licenses/by-nc/4.0/legalcode
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage and that copies bear this no ce and the
full cita on on the first page.

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

2

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Abstract
This document describes the implementa on details of the Hardware Abstrac on Layer (HAL) based on the design specifi-
ca ons provided by deliverable D2.2. It provides a precise mapping between the HAL specifica on and its implementa on
within the overall func onal architecture of HAL. It also demonstrates the feasibility of the HAL architecture by elaborat-
ing its implementa on-level details for various hardware pla orms. In addi on, this document describes the process of
resource virtualiza on and op cal resource reserva on and control implementa on in ALIEN.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

3

DR
AF
T

Table of Contents
Excecu ve Summary 7

1 Introduc on 8
1.1 HAL Architecture Overview . 8

1.1.1 Cross-Hardware Pla orm Layer . 8
1.1.2 Hardware Specific Layer . 9

1.2 So ware Development in ALIEN . 10
1.3 Deliverable Outline . 11

2 Cross-Hardware Pla orm Layer Implementa on 12
2.1 ROFL . 12

2.1.1 OpenFlow Endpoints . 12
2.1.2 OpenFlow Pipeline . 12

2.2 xDPd . 12
2.2.1 Control and Management Module . 13
2.2.2 Plug-in Manager . 14
2.2.3 Slicer . 14

2.3 APIs . 14
2.3.1 NETCONF . 15
2.3.2 Abstract Forwarding API . 16
2.3.3 Hardware Pipeline API . 17

3 Hardware-Specific Layer Implementa on 18
3.1 Packet Switching Devices . 18

3.1.1 X86-based Packet Processing Devices . 18
3.1.2 Programmable Network Processors . 19

3.2 Lightpath Devices . 21
3.3 Point-to-Mul Point Networks . 23

3.3.1 DOCSIS Access Network . 24
3.3.2 GEPON Access Network . 25

4 Resource Reserva on and Virtualiza on 26
4.1 Op cal Resource Reserva on and Control . 26
4.2 Resource Virtualiza on . 28
4.3 Resource Descrip on . 28

4.3.1 Resources in Programmable Packet Switching Devices . 28
4.3.2 Resources in Lightpath Devices . 30
4.3.3 Resources in Point-to-Mul point Devices . 32

5 Summary 34

References 35

Acronyms 36

Appendix A 37

4

DR
AF
T

List of Figures
Figure 1.1 High level func onal architecture of HAL . 9
Figure 1.2 High-level schema c of Cross-Hardware Pla orm Layer . 9
Figure 1.3 OpenFlow en es and interfaces within the Cross-Hardware Pla orm Layer 10
Figure 1.4 HAL implementa on over different hardware pla orms . 11
Figure 2.1 xDPd general architecture . 13
Figure 2.2 Control and Management Module of xDPd . 13
Figure 2.3 The Virtualiza on Agent implementa on within the HAL architecture. 15
Figure 2.4 NETCONF plugin within the HAL architecture . 16
Figure 2.5 Abstract Forwarding API within HAL architecture and implementa on details 17
Figure 2.6 Hardware Pipeline API subsets and invoca on model . 17
Figure 3.1 HAL adapta on for EZappliance network processor pla orm . 20
Figure 3.2 HAL adapta on for NetFPGA cards . 21
Figure 3.3 Rela on between Linux core and SE-S cores in the OCTEON Plus implementa on 22
Figure 3.4 HAL adapta on for ADVA FSP 3000 switch . 23
Figure 3.5 HAL adapta on for DOCSIS Access Network . 24
Figure 3.6 HAL adapta on for GEPON Access Network . 26
Figure 4.1 Implementa on of the Logical Switch Instances management within the HAL architecture. 29

5

DR
AF
T

List of Tables
Table A.1 Virtualiza on Agent implementa on within the xDPd’s code . 37
Table A.2 Abstract Forwarding API implementa on within the ROFL project 40
Table A.3 Hardware Pipeline API implementa on within the ROFL project 43
Table A.4 Interfaces for Plug-in Manager . 44
Table A.5 Header files defining Slicer func ons . 44
Table A.6 Header files defining access func ons for virtualiza on agent database 45
Table A.7 List of xDPD code files modified to enable virtualiza on agent func ons 45
Table A.8 A set of C header files containing AFA API func on declara ons 45
Table A.9 A set of C header files containing HPA func on declara ons . 46

6

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Excecu ve Summary
This document reports on the implementa on details of the ALIEN Hardware Abstrac on Layer (HAL) based on the design
specifica ons detailed in deliverable D2.2.

The main objec ve of HAL is to realize OpenFlow capabili es on network elements that do not have na ve support
for OpenFlow and enable their integra on in an OpenFlow deployment, such as an SDN experimental facility. In order to
achieve this goal, the HAL architecture decouples the hardware-specific control and management logic, which is handled
in its Hardware Specific Layer, from the network node-abstrac on logic which is implemented through the Cross-Hardware
Pla orm Layer. This decoupling fosters reusability for different HAL componentsmaking them readily applicable to a range of
hardware pla orms as this deliverable documents. In effect, this document demonstrates the feasibility of the purposedHAL
architecture by describing the implementa on-level details of the aforemen oned HAL sublayers for the targeted hardware
pla orms which include programmable network processors, general purpose packet processors, op cal switches, as well as
point to mul -point devices.

The document briefly reviews theHAL architecture and its component layers, i.e., Cross-Hardware Pla orm Layer (CHPL)
and Hardware-Specific Layer (HSL). We then proceed to provide a precise mapping between the HAL specifica on (detailed
in deliverable D2.2) and its implementa on, poin ng out in par cular how the so ware developed in ALIEN contributes to
the overall implementa on of the func onal architecture of HAL.

With respect to the implementa on of CHPL, ALIEN has taken advantage of the Revised OpenFlow Library (ROFL) which
provides a founda on for the development of OpenFlow controllers and datapath elements, and the eXtensible DataPath
daemon (xDPd) which allows the development of pla orm-specific forwarding modules for a variety of devices. xDPD sup-
ports extensions through plug-in modules. Examples of plug-in modules in ALIEN include the virtualiza on agent, which
adds slicing func onality, and NETCONF support for the HAL configura on management interface. CHPL communicates
with HSL through a set APIs the implementa on details of which are also presented in this document.

The implementa on of HSL is, of course, hardware pla orm dependent. The document explains the process of HSL
implementa on for the four iden fied target groups of hardware pla orms, namely X86-based packet processing devices,
programmable network processors, lightpath devices, and point-to-mul point devices. In par cular, this deliverable reports
and illustrates HSL implementa on for EZchip NP-3, Cavium Octeon, NetFPGA, ROADM, GEPON and DOCSIS.

Moreover, the document describes how the resource reserva on and virtualiza on mechanisms are implemented in
the HAL. Specifically, the HAL virtualiza on agent implements an OpenFlow-version agnos c slicing mechanism which aims
to avoid single points of failure with respect to virtualiza on as well as to support newer versions of the OpenFlow proto-
col. Finally, this document explains the implementa on of resource reserva on and control in op cal devices which have
different forwarding abstrac ons than the classic OpenFlow datapath.

This deliverable is public. We hope that it will a ract the interest of the wider SDN R&D community working on Open-
Flow network implementa on.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

7

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

1 Introduc on
OpenFlow is considered the leading control plane standard for So ware-Defined Networking (SDN) and has already played
a significant role in reshaping network infrastructures. However numerous provider domains are s ll not equipped with a
proper framework that can facilitate the deployment of an OpenFlow-based control plane on legacy network elements. In
addi on, considering the mul tude of network devices and pla orms to be supported, some vendors have taken a more
cau ous approach, thereby indica ng a degree of hesita on to addOpenFlow func onality on their own (legacy) equipment.
Such issues hinder the migra on of today’s networks to future SDN-enabled networks. The ALIEN Hardware Abstrac on
Layer (HAL) is designed specifically addresses these issues. HAL introduces a feasible approach for describing network device
capabili es and controlling the forwarding behavior of all OpenFlow and non-OpenFlow capable hardware throughout a
network. HAL hides the hardware complexity as well as technology and vendor-specific features, thus presen ng a unified
abstrac on layer to an OpenFlow controller.

Next we provide a brief overview of HAL and its main components, which has been specified in detail in deliverable
D2.2 [7] and publica ons [9], [10].

1.1 HAL Architecture Overview
The main purpose of HAL is to make a legacy network device OpenFlow-compa ble through a set of abstrac ons. This
approach allows operators, on the one hand, to extend their OpenFlow-based control plane to legacy (but valuable) infras-
tructure and, on the other hand, to network modern OpenFlow switches with non-OpenFlow capable devices in a seamless
manner.

Considering the large array of devices that can be supported by HAL, the architecture has been based on a modular de-
signwhich is extensible and compa ble with heterogeneous network devices. Moreover by following such amodular design
approach the behavior of any pla orm can be modified and extended without compromising the overall HAL architecture.
It also makes HAL’s implementa on easier and faster for similar network pla orms by exploi ng module reusability.

A key design choice for HAL is to decouple the hardware-specific control and management logic from the network node
abstrac on. This decoupling allowsHAL to hide the device complexity aswell as the technology- and vendor-specific features
from the control plane logic. Figure 1.1 illustrates the high-level HAL func onal architecture where the decoupling has been
achieved through a split into two dis nct sub-layers, namely, the Cross-Hardware Pla orm Layer (CHPL) and the Hardware-
Specific Layer (HSL). The former is responsible for node abstrac on, virtualiza on and communica on mechanisms. The
la er takes care of discovering the par cular hardware pla orm and performing all required configura on using hardware-
specific modules. The two sub-layers communicate with each other through one of two interfaces, namely the Abstract
Forwarding API and the Hardware Pipeline API depending on the type of the network device.

HAL provides two northbound interfaces to enable the communica on between OpenFlow controller(s) and the de-
vices, and to configure the Virtualiza on Agent via a Network Management System (NMS). The en es represented by
"Network Control" and "Network Management" in Figure 1.1 employ the two northbound interfaces.

1.1.1 Cross-Hardware Pla orm Layer

The Cross-Hardware Pla orm Layer (CHPL), illustrated in Figure 1.2, is the hardware-agnos c so ware component which
is common across all network devices supported by HAL. It comprises several independent modules responsible for device
management (e.g., configura on of underlying device with desired parameters), monitoring (e.g., ge ng no fied about
events like status changes of ports on device), and control. The OpenFlow Endpoint in CHPL encapsulates all necessary
control plane func onali es, maintains the connec ons with the OpenFlow controller(s), andmanages the forwarding state
all the way to the pla orm drivers.

On the management plane, CHPL presents a unified abstrac on of the physical pla orm (physical ports, virtual ports,
tunnels, etc.) to plugin modules hosted by a plug-in manager. This enables various plug-in modules to perform a variety
of management-related opera ons, such as configura on. Examples of plugin modules include a NETCONF or OF-CONFIG

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

8

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 1.1: High level func onal architecture of HAL

agent, a file-based configura on reader, and a Virtualiza on Agent (VA). The VA, as the name implies, adds resource virtual-
iza on features to the pla orm like a FlowVisor, such as, for instance slicing the device to be shared among mul ple users.
The main VA objec ve is to allow mul ple users with simultaneous access to the same physical substrate without interfer-
ence. VA interacts with the OpenFlow endpoint to perform flowspace slicing opera ons. It applies the slicing policies to the
OpenFlow messages sent by the controller to the switch in a protocol-version agnos c way.

Figure 1.2: High-level schema c of Cross-Hardware Pla orm Layer

The OpenFlow Pipeline is an op onal so ware component of CHPL that may be employed to implement the OpenFlow
table(s) in the sub-layer as illustrated in Figure 1.3. It can also be no ced in this figure that the OpenFlow Endpoint and the
OpenFlow Pipeline use the Abstract Forwarding API (AFA) for their communica on. The same API is also used by OpenFlow
Endpoint to communicate with the Hardware Specific Layer where it provides interfaces for management, configura on and
receiving event no fica ons.

1.1.2 Hardware Specific Layer

TheHardware Specific Layer (HSL) addresses the diversity of network pla orms and their communica on protocols. Through
HSL we can overcome the complexity of implemen ng the OpenFlow protocol on different hardware pla orms. In the real

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

9

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 1.3: OpenFlow en es and interfaces within the Cross-Hardware Pla orm Layer

world, every network element or pla orm comes with its own protocol or API for communica ng, controlling andmanaging
the underlying system. Such APIs are o en proprietary and closed to the research community. In HAL, HSL is responsible for
hiding the complexity and heterogeneity of the underlying hardware control for message handling and providing a unified
and feature rich interface in its northbound for the upper layer, i.e., the Cross-Hardware Pla orm Layer. In prac ce, HSL
must deal with different implementa ons for each hardware pla orm. This layer has three key modules:

1. Discovery – Collects the informa on required to ini alize CHPL, e.g., a list of devices working together as a single
hardware pla orm instance and controlled by a single OpenFlow agent instance, available network ports and their
characteris cs such as, for example, transmission technology, transmission speed etc.

1. Orchestra on – Sends configura on and control commands to all hardware components of the device that must be
engaged in request handling. Orchestra on also handles errors such as configura on failures.

1. Transla on – Translates data and ac on models used in CHPL (mostly OpenFlow-based) to the device-specific proto-
col syntax and seman cs, and vice versa.

HSL supports the Hardware Pipeline API (HPA) to interface with CHPL which can be employed, for example, to reuse the
CHPL OpenFlow pipeline implementa on. This facilitates, for instance, the implementa on of the HAL hardware driver for
programmable network pla orms.

HAL has been implemented and is in ac ve use over a variety of programmable and closed-box hardware as illustrated
in Figure 1.4. The Figure also indicates the demarca on points for AFA and HPA. In the following sec on, a detailed account
of HAL implementa on par culars for various types of hardware pla orms is provided.

1.2 So ware Development in ALIEN
We conclude this short overview of the ALIEN with a few pointers to online repositories for so ware that was developed in
ALIEN and relates to this report.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

10

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 1.4: HAL implementa on over different hardware pla orms

Most of the implementa on work described in this document has been made available publicly in the form of open
source so ware packages available to the research community. For example, the list of so ware provided under theMozilla
Public License 2.0 includes:

1. ROFL, the Revised OpenFlow Library, which is a set of libraries for building mul -version OpenFlow Controllers and
Datapath elements. Informa on and so ware repository for ROLF can be found at http://www.roflibs.org.

2. xDPd, the eXtensible DataPath daemon, a framework built on ROFL for developing OpenFlow/SDN datapath ele-
ments and designed to be easily extended with the support of new forwarding devices and pla orms, new Open-
Flow versions and extensions. Further informa on as well as the so ware repository for xDPD is available at http:
//www.xdpd.org.

3. The xDPd-Virtualiza on plugin is a module that adds virtualiza on capabili es to xDPd. The github repository for
this module is available at https://github.com/fp7-alien/xDPd-Virtualization.

4. xCPd, the eXtensible Control Path daemon, a framework that allows intercep on of OpenFlow control messages
to allow access networks to masquerade as distributed switches using tagging. Source code available at https:
//github.com/richardclegg/xcpd

1.3 Deliverable Outline
The remainder of this deliverable is organized as follows. Sec on 2 presents CHPL, star ng with a brief summary of the
ROFL and xDPd implementa ons. Next, we summarize the implementa on of slicer implemented in ALIEN as an xDPd
plugin followed by a presenta on of the HAL APIs. Sec on 3 presents implementa on details for HSL on four categories
of devices, namely, (a) X86-based packet processing devices, (b) programmable network processors, (c) lightpath devices,
and (d) point to mul -point devices. Sec on 4 presents implementa on details about the reserva on and virtualiza on of
resources for ALIEN devices. Finally, Sec on 5 summarizes and concludes the deliverable.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

11

http://www.roflibs.org
http://www.xdpd.org
http://www.xdpd.org
https://github.com/fp7-alien/xDPd-Virtualization
https://github.com/richardclegg/xcpd
https://github.com/richardclegg/xcpd

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

2 Cross-Hardware Pla orm Layer Implementa on
As men oned earlier, the Cross-Hardware Pla orm Layer (CHPL) is the hardware-agnos c so ware component which is
common across all network devices supported by HAL. In this sec on we detail the CHPL implementa on star ng the foun-
da on elements and concluding with the CHPL applica on programming interfaces (APIs).

2.1 ROFL
The Revised OpenFlow Library [3] can be used to build OpenFlow control applica ons, controller frameworks, and data path
elements. In short, ROFL provides a tool box to build OpenFlow-enabled so ware. Two of the most valuable tools in ROFL
are the OpenFlow Endpoints and the OpenFlow Pipeline described next.

2.1.1 OpenFlow Endpoints

ROFL OpenFlow Endpoints provide basic support for the OpenFlow protocol, which includes protocol parsers, messageman-
gling, and so on. In addi on, they map the OpenFlow protocol wire representa on to a set of C++ classes. Each OpenFlow
Endpoint can be used on the data or on the control plane. That is, a ROFL OpenFlow Endpoint can be incorporated either in
a datapath element or in an OpenFlow controller. Respec vely, the endpoint can handle the OpenFlow control connec on
to any controller or datapath element.

In prac ce, an OpenFlow Endpoint hides the details of the respec ve protocol version and provides a clean and easy-
to-use API to so ware developers. Currently, ROFL supports three types of Endpoints, namely for OpenFlow 1.0, OpenFlow
1.2, and OpenFlow 1.3.

2.1.2 OpenFlow Pipeline

ROFL has been enhanced during the ALIEN project with building blocks for crea ng datapath elements, most notably an
OpenFlow pipeline, that can be integrated into any hardware pla orm suppor ng ANSI C. The OpenFlow pipeline can be
used in different ways:

• as a data model of the forwarding plane of an OpenFlow switch

• as a data model and state manager library to maintain the state of the installed flowMod and groupMods entries,
associated mers, sta s cs, and so on. This allows us to let the pla orm-specific code capture events (e.g. flow_mod
inser on, flow_mod removal), APIs to mangle ASIC or other device configura on

• as a data model, state manager, and a so ware OpenFlow packet processing library, using packet processing APIs to
process packets in so ware or hybrid (i.e. hardware-cum-so ware) OpenFlow datapath elements.

Furthermore, the ROFL OpenFlow Pipeline supports mul ple logical switches on a single OpenFlow switch instance,
each running its own OpenFlow version (e.g. OpenFlow 1.0, 1.2 or 1.3). In the case of so ware switches, in par cular,
specific matching algorithms (e.g. flowMod look-up) can be defined on a per table and per logical switch basis, such as, for
instance, L3 op mized matching.

2.2 xDPd
xDPdhas been further enhancedduring theALIENproject dura on as a user-space implementa onof anOpenFlowdatapath
element. It currently supports OpenFlow 1.0, 1.2, and 1.3 [8] and it is designed to run on mul ple hardware pla orms.
Arguably, xDPd has a somewhat cleaner so ware architecture than the OpenFlow Virtual switch (OVS). xDPd implements an
internal interface, namely the Abstract Forwarding API (AFA). In xDPd nomenclature, AFA is the API between the hardware-
independent Control and Management Module (CMM) and the hardware-dependent Pla orm Driver (see Figure 2.1).

With respect to implementa on and opera onal experience, xDPd is available on several hardware pla orms, includ-
ing: User-space GNU/Linux (x86-gnu-linux), GNU/Linux Intel DPDK (x86-dpdk), CaviumOcteon, Broadcom, EazyChip (EZchip

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

12

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 2.1: xDPd general architecture

NP-3), and NetFPGA-10G; an up-to-date list is available online as well at http://xdpd.org/#platforms. Source code
availability for each of these pla orms may be subject to hardware vendor license and, as such, not all of pla orm drivers
can be open-sourced by the ALIEN partners.

As men oned earlier, OpenFlow pipeline implementa on for different hardware pla orms is greatly facilitated by the
availability of ROFL. One of the features of xDPd is the crea on of mul ple Logical Switch Instances (LSIs). LSIs are created
either through a configura on file which is processed at start up me, or dynamically through a configura on interface.
Each LSI is bound to network interfaces. In the case of mul ple LSIs, network interfaces have to be exclusively assigned to
one LSI only. This is a simple way of slicing and a first realiza on of a virtualiza on.

2.2.1 Control and Management Module

Figure 2.2: Control and Management Module of xDPd

The Control and Management Module (CMM) is the hardware-independent part of xDPd. CMM consists of a core
module that implements an OpenFlow-like API in C++, which abstracts over the pure OpenFlow in that it allows LSIs of
mul ple protocol versions to run in parallel. In order to do so, CMM needs to bind the proper OpenFlow Endpoint version
to the LSI, perform sanity checks on the flowMods sent, and in general be prepared to handlemessages of mul ple versions.
As an example, message numbers, protocol fields, and counter formats (32-bit to 64-bit) differ between versions, so there
needs to be a proper transla on where possible, and marking of messages where necessary.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

13

http://xdpd.org/#platforms

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

2.2.2 Plug-in Manager

The xDPd configura on and management interfaces are exposed through the Plug-in Manager. As a result, xDPd can be
extended to provide further interfaces to configura on and management en es. Table A.4 summarizes the interfaces
implemented by each plug-in.

2.2.3 Slicer

Slicing func onali es within xDPd are provided with a set of methods that form the so-called Virtualiza on Agent (VA). The
main objec ve of the Virtualiza on Agent is to enable mul ple controllers (which are likely to correspond to different exper-
imenters/tenants) to control the same physical substrate, which is composed of xDPd-enabled switches, without interfering
with each other. In its current implementa on, the flowspace slicing mechanism is OpenFlow protocol version agnos c
and, in principle, works with every field of the packet’s header.

Below we summarize the most important opera ons that are performed by the Virtualiza on Agent:

• The VA checks the header of the packets against the slice configura ons and configures the des na on controller
for the OpenFlow Endpoints.

• The VA intersects the matches of the flowMod messages coming from the controllers with the corresponding flows-
pace defini on. In the current implementa on, the VA sets the VLAN_ID to the value assigned to the slice.

• The VA checks if the ac ons contained in the flowMod and packetOut messages violate the slice’s defini on (e.g.
sending packets out to a port that is not part of the slice).

• The VA checks if the ac ons contained in the buckets of the groupMod messages violate the slice’s defini on (e.g.
sending packets out to a port that is not part of the slice).

Figure 2.3 illustrates the implementa on of the VA within the HAL architecture. In par cular, one instance of the
VA is created during the device start-up and is responsible for the correct flowspace slicing. The VA does not inspect the
OpenFlow protocol but leverages on the protocol-agnos c xDPd's internal structures to both select the correct controller
for switch-to-controller messages and to filter out the controller-to-switch messages that violate the slice defini ons.

The slicing process is performed within the OpenFlow Endpoints by calling the methods exposed by the VA. These are
the labels MESSAGE ANALYSIS FILTER and SELECT SLICE in Figure 2.3. The process does not involve OpenFlowmessages, but
operates on protocol-agnos c structures such as of1x_ac on_group_t and of1x_flow_entry_t; see also Table A.1. However,
the "newflow"messages are analyzed outside the endpoints. In par cular, this type of processing occurs in the xDPd Control
and Management Module, implemented in xdpd/cmm.cc, in order to avoid the OpenFlow protocol inspec on (see SELECT
CONTROLLER label in Figure 2.3).

The aforemen oned func ons are implemented within the xDPd code tree and are defined in the header files listed in
Table A.5. The files that are added in the configura on plugin for reading and upda ng the Virtualiza on Agent database
are listed in Table A.6. Moreover, the xDPd code files that have been enhanced during the ALIEN project dura on in order
to implement the VA func ons can be found in Table A.7.

Finally, Table A.1 reports the most relevant func ons used to implement the Virtualiza on Agent.

2.3 APIs
The HAL architecture is comprised of four main layers, (1) the Control and Management Layer, (2) the Cross-Hardware
Pla orm Layer (CHPL), (3) the Hardware Specfic Layer (HSL), and (4) the forwarding / network devices layer. These layers
communicate with one another using a set of well-defined interfaces. In this sec on, the different interfaces of the HAL
architecture (i.e., NETCONF, AF API, and the Hardware Pipeline API) are described.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

14

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 2.3: The Virtualiza on Agent implementa on within the HAL architecture.

2.3.1 NETCONF

In theOpenFlowprotocol specifica on(s), several configura on andmanagement requirements are included either explicitly
or implicitly as described in [OF-CONFIG]. These requirements include:

• connec on setup to the controller (e.g., the IP address of the controller, the port number, the transport protocol
used, either TLS or plain TCP)

• support for mul ple controllers

• connec on interrup on handling (i.e., fail-over modes in case one of the controllers malfunc ons)

• switch and controller cer ficate configura on for each controller that is configured to use TLS

• queue parameters configura on such as min-rate, max-rate for queue traffic

• switch port configura on

• capability discovery to describe the capabili es of the OpenFlow logical switch, and

• configura on of the switch datapath ID.

Using (sta c) configura on files to configure each device with the above configura on parameters can be cumbersome
and has opera onal limita ons. NETCONF [13] can be employed to automate this process and therefore it is seen as a rea-
sonable alterna ve to use for managing ALIEN devices at the same me and installing the above configura on parameters.
As such, in order to reduce the complexity of the management tasks, a NETCONF extension/plugin is introduced in the HAL
architecture implementa on, as illustrated in Figure 2.4.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

15

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 2.4: NETCONF plugin within the HAL architecture

The main purpose of the NETCONF plugin is to provide ALIEN island administrators and users with a management
interface to configure the underlying ALIEN devices with several parameters, such as the OpenFlow controller IP address
and switch datapath IDs. For administrators to have management access over network devices, they should be provided
with a list of management commands that they can use to configure the underlying devices. For instance, administrators
can use a command line interface (CLI) to list the commands that are available. Taking the the OpenFlow management and
configura on requirements men oned above as a baseline, the following commands could be included:

• list_capabili es <dpid>

• list_ports <dpid>

• disable_port <dpid, portNo>

• list_logical_datpaths <dpid>

2.3.2 Abstract Forwarding API

The Abstract Forwarding API (AFA) provides all the interfaces for management, configura on and events no fica on of the
Hardware Specific Layer instance for the associated hardware pla orm. The management and configura on parts of the
AFA interface must be implemented by a hardware driver and called by the Cross-Hardware Pla orm Layer instance (see
Figure 2.5). The No fica on part is provided by Cross-Hardware Pla orm Layer instance and invoked by a hardware driver.

AFA is implemented within ROFL as a set of C header files containing AFA API func on declara ons as listed in Table
A.8. Func ons declared in these files must be used by hardware driver subproject created within the xDPd implementa-
on. Table A.2 contains a list of AFA abstract methods declared in the HAL specifica on [7] and corresponding func on(s)

implementa ons in ROFL. Table A.2 also updates informa on from the HSL specifica ons document [6] containing the first
version of HAL AFA implementa on required for HSL specifica on and development. More informa on about AFA func ons
and required parameters could be found in [7] and in the ROFL source code repository.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

16

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 2.5: Abstract Forwarding API within HAL architecture and implementa on details

2.3.3 Hardware Pipeline API

Hardware Pipeline API (HPA) is a low-level interface providing access to network packet opera ons, memory management,
mutex and counter opera ons which are realized in different ways on different programmable pla orms (see Figure 2.6).
The main benefit of using the HPA interface is that the hardware driver does not need to implement the OpenFlow Pipeline
per se. Rather the hardware driver can reuse the CHPL OpenFlow Pipeline implementa on presented earlier in this sec-
on. This approach reduces significantly the overall development effort required to implement the HAL hardware driver on

programmable network pla orms such as Cavium Octeon, Broadcom Triumph2, Intel DPKK, and EZchip NPS processors.

Figure 2.6: Hardware Pipeline API subsets and invoca on model

HPA is implemented using ROFL as a set of C header files. The HPA func on declara ons are listed in Table A.9. More-
over, the list of HPA abstractmethods introduced in theHAL specifica on [7] and corresponding func on(s) implementa ons
in ROFL can be found in Table A.2.

Table A.3 updates the informa on found in the earlier published HSL specifica on document [6], which presented the
first version of HAL Pipeline implementa on required for HSL specifica on and development. More informa on about HPA
func ons details and required parameters could be found in [7] and in the ROFL source code repository.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

17

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

3 Hardware-Specific Layer Implementa on
In this sec on, the HAL Hardware-Specific Layer is presented for four groups of network devices:

• X86-based packet processing devices -- This group comprises general purpose network devices that perform packet
handling in so ware. This includes compu ng pla orms from server boards to mini PCs like Raspberry Pi, Arduino,
and so on, which typically have at least two or more independent network interfaces to turn them into poten al
forwarding nodes.

• Programmable network processors -- This group refers to network devices which allow their data plane to be pro-
grammed to perform packet processing. For some network processors (e.g.: EZchip NP-3, CaviumOcteon, NetFPGA),
it is possible to implement the OpenFlow Pipeline directly into hardware.

• Lightpath devices -- Since the OpenFlow protocol is limited to an Ethernet-like abstrac on, in the case of op cal de-
vices, such as reconfigurable op cal add-drop mul plexer (ROADM) systems, the abstrac on layer must be adapted
to meet the OpenFlow extension requirements for suppor ng circuit-switched networking.

• Point to mul -point access networks -- For devices such as those based on standards like Gigabit Passive Op cal
Network (GEPON) and Data Over Cable Service Interface Specifica on (DOCSIS), with deployments based on "head"
and "tails" topologies, some kind of orchestra on is necessary for exposing several devices as a single OpenFlow-
enabled "device" through HAL.

Each of these four groups group has different constraints and imposes various implementa on challenges which have
been explained in detail in earlier deliverables [5] and [6]. As a reminder, deliverable [5] has dis nguished five types of net-
work hardware themes, which are used in this sec on in order to present HAL architecture implementa ons for these types
of hardware pla orms. The Physically Reconfigurable Systems theme has no impact on HAL design and its implementa on
thus is not presented in this sec on.

3.1 Packet Switching Devices
This subsec on discusses two types of packet switching devices that have been considered in ALIEN, namely network devices
based on the Intel x86 architecture and devices employing programmable network processors.

3.1.1 X86-based Packet Processing Devices

SDN has been earlier associated with datapath forwarding using so ware switches typically running some Linux OS on a
commodity server or PC. In general, this sort of hardware features a small number of network interface cards (NICs) that
are a ached via the PCI bus to the south bridge on a server mainboard. As most of these servers during the last decade
incorporated Intel or AMD (x86) CPUs, the implementa on of packet forwarding became essen al for this architecture. As
the frequency of an individual CPU core reached a limit of approximately 3.7GHz, some years ago the x86 architecturemoved
to mul -core CPUs based on replica ons of older core layouts on a smaller chip surface, benefi ng from the c-toc of large
CPU manufacturers (shrinking the masks before moving to a new architecture). At the same me, the PCI bus speed and
the south bridge itself became increasingly more of a bo leneck for fast packet forwarding. Recent architectures therefore
connect directly PCI lanes to certain CPU cores. This is complemented by the Intel's DPDK, the Data Plane Development
Kit. This so ware development kit replaces Linux kernel drivers for Ethernet cards with libraries that allow direct memory
access to the ring buffers on the NIC.

Recently, a number of so ware switch implementa ons added DPDK support (i.e. Open vSwitch, xDPd) and reported
significant speed-up of forwarding rates to reach line rates of 10 Gbit/s on low-cost CPU equipment like the Intel Atom
pla orm.

The drawback of DPDK, however, is that it works prac cally only on Intel CPUs andNICs, limi ng its applicability. Netmap
[15] increases the number of supported network interface cards while prac cally allowing the samememory access without
the duplicated copy from the NIC to kernel space and then again to user space.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

18

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

MMAP (memory map) is the general version that circumvents one copy opera on between the kernel and user space
by allowing direct access from user space processes to the Rx/Tx ring buffers. The measured speed difference between the
DPDK andMMAP versions for xDPd during a recent comparison resulted in a factor of more than 5. Detailed documenta on
of these results will be included in the forthcoming deliverable D5.3.

3.1.2 Programmable Network Processors

Programmable Network Pla orms represent a set of network equipment containing a re-programmable hardware unit (NPU
or FPGA) that can be adapted to a wide range of network processing tasks (i.e. packet switching, rou ng, network moni-
toring, firewall protec on, deep packet inspec on, load balancing, etc.). These pla orms allow for expressing packet pro-
cessing control/service logic, using a programming language, in form of compiled source code which can be implemented
indefinitely on a single hardware unit.

Programmable processors are ideal hardware pla orms for introducing and valida ng newnetworking concepts. To take
advantage of this possibility, in the ALIEN project, dynamic adapta on of network node capabili es has been inves gated
in order to introduce new protocols to a datapath element with new processing ac ons which later could be added to the
OpenFlow protocol ac on set.

Currently, there are many programmable network pla orms available in the market produced by several vendors such
as EZchip, Marvell, Cavium, Broadcom, Freescale, PMC-Sierra, and Tilera. Each vendor provides programmable processors
using quite different processor architectures in terms of microcore types (i.e., general core like in CPU, task op mized core);
organiza on (e.g., homogenous cores loosely assigned to tasks, strict pipelines of heterogeneous cores); add-ons (i.e., hard-
ware accelerators for parsing, pa ern matching, cryptography, packet classifica on, querying, among others); and memory
accessibility (e.g., standard CPU cores with ASIC network enhancements, task op mized NPU cores). This heterogeneity of
network processors is a challenge when establishing common implementa on assump ons based on the HAL specifica on
design.

EZappliance Pla orm
The heart of the EZappliance pla orm [1] is the EZchip NP-3 network processor (see Figure 3.1), a fully programmable chip
which enables flexible parsing, classifica on, packet header manipula on and switching of pass through packets. It is the
part of the implementa on stack where packet processing through the OpenFlow Pipeline should occur in order to take
advantage of the full performance of processor. Unfortunately, the CHPL pipeline for handling packet abstrac ons cannot
be reused as-is in this pla orm because the NP-3 processor has very strict me constrains for packet processing and cannot
store the packets anywhere inside the pla orm. For this reason, a new implementa on of the OpenFlow Pipeline for NP-3
task-op mized cores was developed from scratch using the EZchip assembly language.

TheNP-3 processor is accompaniedwith a standard CPU foreseen for the deployment of control andmanagement plane
func onali es. The standard CPU was used to deploy both CHPL and HSL. Since the CHPL pipeline is not used, HSL could be
controlled by CHPL through the AFA interface only.

The HSL for EZappliance devices supports discovery and translator func onali es. The discovery func onality is based
on automa c retrieval of informa on about all data plane ports, along with the corresponding a ributes and status. In
the case of EZappliance, which is a standalone device, topology discovery is not required (for the same reason, HSL for
EZappliance does not include the orchestrator func onality).

Themost complex part of HSL is the implementa on of transla on func onality which transforms OpenFlow-based AFA
messages intomemory structures located within the NP-3 network processor. The NP-3memory structures are accessed via
the EZdriver provided by EZchip. The seman cs used for the EZappliance memory structures is quite similar to OpenFlow,
i.e., the memory contains a structure with flow entries but the syntax is mostly different: proprietary binary encoding of
packet matching and ac ons. Transla on in the HSL is stateless.

NetFPGA Cards
Similarly to NP-3, NetFPGA cards [2] can be treated as programmable packet processors. They have four 1 Gb/s Ethernet
interfaces (or 10Gb/s in a newer versions). Both card versions can work as separate network nodes, however, typically they

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

19

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 3.1: HAL adapta on for EZappliance network processor pla orm

are mounted to a PC and they are integrated with the opera onal system via PCI or PCIe bus. The program, which is running
in the FPGA chip, has to be prepared in Verilog or VHDL. Due to the specific architecture and technology, its performance is
very high and it is widely used by designers of different prototypes.

In ALIEN NetFPGA cards are used as a hardware pla orm. The OpenFlow Pipeline is almost fully implemented in the
NetFPGA logic which offers much be er performance characteris cs compared to using the CHPL pipeline that has to be
deployed in the PC opera ng system as part of HSL. In the NetFGPA HAL realiza on (see Figure 3.2), the CHPL pipeline is
used as a full featured OpenFlow albeit slower implementa on which processes only the packets that cannot be handled
by the hardware pipeline due to OpenFlow missing features in the current hardware pipeline implementa on.

The CHPL for NetFPGA cards is placed in the PC opera ng system and has a connec on with the network controller
using the OpenFlow protocol via the NIC of PC. The HSL for NetFPGA also realizes discovery and transla on func ons. The
transla on func onality is responsible for recoding of OpenFlow flow entries into a binary representa on recognized by the
hardware OpenFlow pipeline in the NetFGPA card.

Proper control informa on (flowMods) are stored in the hardware chip of the NetFPGA card and all possible flow ac-
ons (packet forwarding, dropping, etc.) are realized by the hardware chip. It is only the first few packets per each flow (or

flows) which cannot be served by the hardware pipeline that are handled in the so ware realiza on of HSL.

Cavium Octeon
The Cavium OCTEON family offers a variety of Mul -CoreMIPS64 processor boards especially targeted for network process-
ing du es. With 1 to 48 cnMIPS cores on a single chip, depending on the model, and other hardware accelera on units
(port I/O, cryptography, DFA, etc.), they are a highly versa le so ware programmable network pla orm.

The architecture of the implementa on is as follows:

• There is a single MIPS core, called the management core, running a standard CAVIUM Linux OS. The management

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

20

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 3.2: HAL adapta on for NetFPGA cards

core is employed to run xDPd (CMM, HSL) and the specific OCTEON driver

• There is shared memory, allocated at boot me in the so-called bootmem area shared across the management core
and the rest of the I/O cores.

• Finally, the N-1 remaining cores are devoted to process packets. They run on bare-metal, that is, that is, in standalone
mode (Single Execu ve Standalone, SE-S) in OCTEON's terminology, which means that they run a specific compiled
binary program in single-threadmode, without any kind of opera ng systemor thread context swappingwhatsoever.

The management core is in charge of dealing with the par cular configura on of the fast path rules, so the OpenFlow
pipeline, while the remaining cores use this state to process packets con nuously (See Figure 3.3). Actual packet flow is
going through the SE-S cores exclusively, except in the case when there is no match in the FlowTable.

The interac on of the controller with the device is taking place via OpenFlow. The OpenFlow Endpoint is the one
implemented as part of ROFL in the CMM. Inside the OCTEON processor itself, another API is used to access the specific
func ons and registers of hardware accelerators. This API is called Simple Execu ve API (SE-API) or HAL in the OCTEON
Users’ Manual (not to be confused with the ALIEN-specified HAL). The Linux core implements a pipeline that is a logical
representa on of the SE-S cores, and no packet actually passes through this one, except Packet-outs for convenience.

3.2 Lightpath Devices
OpenFlow, as a control protocol, promotes the use of flows instead of packets as the most vital unit of control alongside
the separa on between control and data planes. The op cal domain, however, has long followed this approach since there
is a clear separa on of the control from the data plane. In addi on, the no on of packets does not even exist in this
domain. Instead, a lightpath, which can be considered as a flow, is the fundamental unit of informa on when establishing
a connec on from one op cal node to another. However, OpenFlow focuses mostly on packet switching and, originally

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

21

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 3.3: Rela on between Linux core and SE-S cores in the OCTEON Plus implementa on

did not offer any support for circuit switches, though this has been addressed to some degree later through a number of
extensions proposed [4].

Lightpath devices are used mainly, but not limited to, in the core of the network to provide high-speed links between
transit nodes of the network. Op cal switch devices offer a number of benefits to the operators such as scalability (since
and they can switch large amounts of data with very low latency) and energy efficiency (compared to the power consumed
by an electronic switch device). The emerging convergence of op cal packet domains fostered by OpenFlow can enable
operators to sa sfy the growing demands for reduced latency and large amount of bandwidth from the current and evolving
applica ons (e.g. 4K streaming, video on demand, etc.).

TheADVA FSP 3000 is a high-performanceWavelength-DivisionMul plexing (WDM) networking system for bidirec onal
transmission of op cal signals. The system uses a modular structure which enables a flexible upgrade of capacity and
func onality according to network requirements. The transmission between the modules is op cal and passive, which
means that the device control is completely separated from the data plane.

As opposed to a packet switch, an OpenFlow-enabled circuit switch consists of a cross-connect table and an OpenFlow
channel to the controller. The cross-connect table maintains a list of entries with all connec ons between the ports inside
the switch. The OpenFlow Endpoint is handled using the ROFL library, which has been enhanced to support the op cal
extensions to the protocol. the OpenFlow Pipeline func onality is not supported by lightpath devices since there is no
no on of packets in the op cal domain and no packets can be buffered or forwarded to the controller.

As illustrated in Figure 3.4, in order to get the OpenFlow abstrac on of the device the Simple Network Management
Protocol (SNMP) management interface is used. However, this interface first needs to be configured manually with a valid
IP address to enable remote access. SNMP communica on (traps, get/set messages) provides all the informa on that can
be extracted from the network element, while the layer above is responsible for receiving and transla ng from this pool
of resources the those that are required for the OpenFlow abstrac on (OpenFlow Resources). The layers described above
compose the HSL of the ADVA network elements. On top of that the func onality and the facili es supplied by ROFL are

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

22

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

employed to maintain the OpenFlow channel and handling messages received from the extended OpenFlow controller.

Figure 3.4: HAL adapta on for ADVA FSP 3000 switch

3.3 Point-to-Mul Point Networks
In general, point-to-mul point devices consist of a "head end" which communicates with several "tail end" devices, usually
through broadcast means with some form of mul plexing which allows the devices to know which traffic is intended for
them. This approach is very common in access technologies. Within the ALIEN project, two types of hardware in this
category are used, namely the Gigabit Ethernet Passive Op cal Network (GEPON) and the Data Over Cable Service Interface
Specifica on (DOCSIS). Descrip ons of both devices can be found in [5].

The Access Network (AN) provides the connec vity between the home/business customer's loca on (i.e. subscribers)
and the operator's premises. This part of the network is known as the lastmile and it is considered as the bo leneck in terms
of bandwidth. It is also o en the most expensive part of an operator's network. There are several technologies currently
used in commercial deployments depending on the available media, such as xDLS (copper), DOCSIS (cable) or GPON (fiber).
In order to deploy the system in the most cost-effec ve manner, this media is shared by a set of subscribers. As a result,
bandwidth sharing is one of the goals of any of those AN technologies. Regardless of the specific technology used, all these
systems can be abstracted as a point-to-mul point (i.e. operator-to-subscribers) device.

One of the main challenges of these systems is that they are so specific in nature (i.e. focus on the Access Network)
and technology that it is hard to integrate their control and management planes in a more generic framework, such as an
applica on-oriented and mul -access technology solu on. In this context, the SDN paradigm and OpenFlow are the tools
that enable this integra on by introducing a common abstrac on for networking devices, i.e. the ALIEN-specified HAL. This
layer deals with specific interfaces and hides the dependence on the technology. In the end, a HAL-based AN is agnos c
with respect to the actual technology deployed.

In the following subsec on, we present an example of this proposal for a DOCSIS system, which exposes OpenFlow as
its northbound interface. By doing this, the whole system can be abstracted as a single OpenFlow device.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

23

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

3.3.1 DOCSIS Access Network

The DOCSIS pla orm, illustrated in Figure 3.5, comprises threemain elements: the CMTS, the cable, and the cable-modems
(CMs). The CMTS is the head-end and 'intelligent' part of the system, which determines the use of the shared media by the
CMs. The CMTS must be configured in the bridge mode (i.e. TLAN or L2VPN) to be compa ble with OpenFlow abstrac ons.
The cable is the shared media (coaxial) between the CMTS and several CMs. Finally, the CMs are the tails of the system
located at the subscriber's loca on. Collocated with the CMs, it is customary to deploy a managed OpenFlow User Instance
(OUI) to implement some service related networking logic. In order to implement connec vity between any CMs in bridge
mode, an external device (i.e. aggrega on switch -AGS-) is needed adjacent to the CMTS.

Figure 3.5: HAL adapta on for DOCSIS Access Network

Since theDOCSIS pla orm is closedwe cannot reprogram the devices, control is only possible through vendor-supported
standard interfaces. In principle, this limits the integra on of DOCSIS under an OpenFlow interface. However, by adding
the OUI and aggrega on switch in the picture (i.e. as helper boxes), we can orchestrate the whole system to overcome
these limita ons and implement a fully compa ble solu on. As a result, the ALHINP (ALien HAL Integra ng Network Proxy)
performs the proper abstrac on from the whole system by si ng (in the control plane) between the set of network devices
and the OpenFlow controller. This proxy is based on AFA, since the actual data plane remains outside the DOCSIS proxy.

As previously men oned, the ALHINP resides on an external box logically located between the pla orm and the con-
troller and implements both layers of HAL: CHPL and HSL. In this implementa on, CHPL consists of the OpenFlow Endpoint

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

24

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

using the AFA as its southbound interface. Therefore, CHPL interacts with the HSL through AFA.
HSL for DOCSIS pla orm implements the discovery, orchestra on and translator func onali es. The discovery compo-

nent provides informa on each me a new CM is connected to the system. As a consequence, ALHINP dynamically updates
the virtual ports exposed to the controller, since each CM is abstracted as a new virtual port of the virtual OpenFlow switch.
The orchestra on component enables the coordina on of mul ple hardware components (i.e. OUI, CMs, CMTS and AGS)
so they act as a single device.

All control plane interac ons between the controller and the proxy must be handled to achieve a similar/emulated re-
sponse from the set of devices. In order to improve the modularity of the system the orchestrator assumes three domains:
OUI, AN and AGS. Each domain implements its own driver to interact with the target device via the available interface.
Moreover, by doing this separa on the proxy can be easily developed and the AN technology can be changed just by de-
veloping a new driver for it. Finally, the transla on component implements the logic to map the virtual ports (from a single
virtual DataPath Iden fier) to real ports and physical DataPath Iden fiers, and vice versa. This func onality is implemented
in coordina on with the orchestra on module and gets input from the discovery module.

ALHINP can be used as an example of how any other AN technology can be abstracted following a similar approach and
be exposed though an OpenFlow interface. By doing so, the AN can be controlled as any other OpenFlow resource, and even
more, any previously developed OpenFlow applica on can run without any adapta on. As next steps we are inves ga ng
how the management of the shared media (e.g. the bandwidth assigned to each subscriber) can be exposed though the
OpenFlow interface of the proxy. The appropriate extensions are currently under development.

3.3.2 GEPON Access Network

Similarly to DOCSIS, GEPON has three main elements which can be considered analogous: the OLT (Op cal Line Terminal),
the spli er and the ONUs (Op cal Network Units); see Figure 3.6. OLT is the head end device that is the most intelligent
part of the system and is responsible for orchestra ng the ONUs. The ONUs are usually situated in customer premises. Data
transfer between ONUs and OLTs is op cal. In a typical deployment, data between ONUs goes via a head-end switch outside
the OLT. The op cal part of the network is passive and all data from the OLT goes to all ONUs which share their me using
me division mul plexing.

As with DOCSIS, GEPON is proprietary/closed source equipment. A different approach was taken to that taken by the
DOCSIS implementa on although the two approaches are complementary. Instead of having the OUI boxes collocated with
the tail-end equipment, the GEPON HSL works with changes only at the head-end device. The key change is to enhance
the switch outside the OLT to be OpenFlow-enabled and to add a proxy device, known as eXtensible Control Path daemon
(xCPd). xCPd speaks OpenFlow northbound and southbound and pretends to be a large virtual switch with one port for the
OLT and one port for every ONU. XCPd translates these virtual ports to either the appropriate real port and, if appropriate,
a VLAN tag that is associated with the appropriate ONU. Where OpenFlow requirements cannot be met using just VLAN
tags, then xCPd communicates directly with the OLT via its management port. xCPd orchestrates the changes to the OLT
and the transla ons of matches and ac ons to the lower-level OpenFlow switch. The downside is that because VLAN tags
are used between the OpenFlow switch and the OLT then those tags cannot be used elsewhere unless the device supports
QinQ (stacked VLAN tags) which the model at UCL does not.

xCPd is a generic framework that could be used to control any access network with the following requirements:

• all traffic between tail-end devices goes via a switch upstream from the head-end.

• the head-end device can route traffic via tags and untag them.

• the head-end device can tag packets from tail end devices.

For some OpenFlow func onality then hardware-specific sec ons must be wri en that is par cular to the hardware in
ques on. This is the control path labelled MGMT in Figure 3.6. Por ng to new access devices mee ng the above require-
ments automa cally will achieve the majority of OpenFlow 1.0 func onality. Port sta s cs will not map correctly without
hardware-specific code being wri en for the hardware to be ported.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

25

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 3.6: HAL adapta on for GEPON Access Network

4 Resource Reserva on and Virtualiza on
This sec on summarizes the outcomes of the Task 2.4 development ac vi es focused on Reserva on and Virtualiza on of
Resources.

Resource reserva on refers to the characteriza on of resource types including interfaces, processing units, and the
flowspace. As a result, the extension of the OpenFlow data model is provided to expose such resources through the control
channel.

Resource Virtualiza on refers to the segmenta on of the available resources such as forwarding nodes and flowspace.
The outcome of the Resource Virtualiza on ac vi es within WP2 is the implementa on of a distributed and OpenFlow ver-
sion agnos c slicing mechanism as a component of the HAL. This component, called Virtualiza on Agent, tries to overcome
two of themain limita ons of other approaches like FlowVisor [14] and VeRTIGO [11] that are: Single Point of Failures (SPoF)
and lack of support for versions >= 1.1 of the OpenFlow protocol.

4.1 Op cal Resource Reserva on and Control
The OpenFlow protocol was ini ally introduced to allow programmability in networks; however the ini al proposal took
into considera on only the packet switches of the network. As opposed to the packet switch, an OpenFlow enabled circuit
switch consists of a cross-connect table instead of a matching packets table. This subsec on describes the changes needed
to be applied to the original Stanford implementa on in order to control the ADVA op cal ROADM network elements.
Amendments in the protocol, as expected, need to be applied both on the OpenFlow agent as well as the controller used
to control the device itself.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

26

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

The implementa on of the OpenFlow datapath for the ROADM network element is based on the circuit switching ex-
tensions ver. 0.3 [4]. These extensions are merged with the OpenFlow specifica on v1.0 and have been developed in a
way that it does not break the protocol structure size and fields. Addi onally to these extensions we have developed some
further extensions that are required for the ADVA ROADM network element to be controlled by OpenFlow.

In the following a short outline of the most important changes included in the OpenFlow addendum is provided though
readers interested to know more about the OpenFlow circuit extensions should refer to the original document [4]. First of
all, addi onal capabili es have been added in the features reply message to accommodate the extra features of the op cal
switch. Also in the features reply message a new structure has been added to describe the physical ports (ofp_phy_cport) of
a circuit switch and some of the exis ng padding bytes have been used to specify the number of circuit ports in the op cal
switch.

Moreover, there are some addi onal messages that have been defined to enable control of the op cal devices. Op cal
cross connec ons are setup and torn down by the controller using the CFLOW_MOD message and some errors message
types have been added to inform the controller if something goes wrong. The CFLOW_MODmessage contains the so called
logical equivalent of ofp_match structure, the ofp_connect structurewhich describes the cross connec on inside the switch.
Also a CPORT_STATUS message has been added to allow the switch to inform the controller about changes in the state of
the physical circuit port.

In addi on to these extensions, we have u lized the flexibility OpenFlow provides by defining a number of extensions
using the OFPT_VENDOR (4) message type which is used as a stage is foreseen as a staging area for new protocol (experi-
menter) features. Vendor extension feature allows for extending the protocol without breaking the compa bility with the
base protocol specifica on.

The vendor OpenFlow message contains a field vendor a er the OpenFlow header which is the vendor id for the
device/vendor that this message has been implemented. A vendor code has also been defined for the ADVA ROADMs,
OOE_VENDOR_ID (0x41445641) to iden fy a set of messages that are specific for this device. Furthermore, a new header
was developed for this type of message:

struct ooe_header {
struct ofp_header header; // openflow header
uint32_t vendor; // vendor id
uint32_t type; // message type (OOE_ message type)
uint8_t data(0); // message payload

}

In addi on, a number of device specific messages and respec ve codes were defined in order to iden fy them. The
purpose of these types will be explained in the following paragraphs.

enum ooe_type {
OOE_SWITCH_CONSTRAINTS_REQUEST,// switching constraints
OOE_SWITCH_CONSTRAINTS_REPLY, // switching constraints
OOE_POWER_EQ_REQUEST, // power equalization
OOE_POWER_EQ_REPLY, // power equalization

}

Switching constraints describe how the physical ports are connected with each other inside the ROADM. This rela on-
ship between ports comes from the internal network element configura on. The device comprises a number of physical
cards connected with each other through fiber jumpers. The switching constraints map informs whether the op cal signal
can flow between par cular ports. However, it should be noted that switching constraints do not tell whether a setup is
really possible for a lightpath, even if these ports are physically connected. In order to be able to determine whether it is

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

27

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

indeed able to do that, the features of the port must be consulted to check that the specified wavelength λ is supported by
both ports.

The ADVA ROADM cards require that the power equaliza on procedure to be triggered a er a cross-connec on is cre-
ated in the Wavelength Selec ve Switch (WSS). Without power equaliza on, the ROADM card will be blocking the signal
flow. The extended OpenFlow controller can send a power equaliza on request to the OpenFlow switch and therefore in-
struct the switch to equalize the op cal signal power onmodules that require such procedure. Such equaliza on is triggered
by specifying ports and a wavelength. Equaliza on is triggered on modules that are located along the internal signal path
between these ports; the request is unidirec onal.

4.2 Resource Virtualiza on
Resource virtualiza on in HAL-enabled devices is achieved with the virtualiza on mechanisms implemented through the
Virtuliza on Agent (VA) and the Logical Switch Instances (LSIs). Other approaches like [14] or [11] do not provide the support
for OpenFlowprotocol versions beyond 1.0 and,moreover, introduce an addi onal layer on the control channel to obtain the
virtualiza on of the network resourceswhich represents a SPoF. The implemented framework aims at providing a distributed
virtualiza on architecture (no SPoFs) which is able to run on mul -version OpenFlow switch network scenarios.

The VA, whose implementa on has been described in detail earlier in this deliverable 2.2.3, aims at virtualizing the
forwading plane with flowspace slicing techniques; see also Deliverable D2.2 [7] for more details.

LSIs allows the par ons of the physical devices into several virtual switches. Each virtual switch is configured as a
subset of ports of the physical device and includes an endpoint that supports a given version of the OpenFlow protocol and
connects to a single OpenFlow controller.

While the objec ve of the VA is to allow the forwarding plane to be shared amongmul ple controllers, eachwith dis nct
forwarding logic, the objec ve of the LSIs is to logically extend the forwarding plane with more nodes than the number
actually available in the physical infrastructure. The combina on of the twomechanisms permits each HAL-enabled physical
node to be split into mul ple logical nodes and each logical node to be shared among different OpenFlow controllers.

The LSImanagement is located in theCross-Hardware Pla ormLayer and implementedwith the class named "switch_manager"
in xdpd/management/switch_manager.h whose main methods are listed in Figure 4.1.

4.3 Resource Descrip on
Datapath resource descrip ons are required both for network management and control systems in order to dis nguish
different types of network nodes and their capabili es. The knowledge about a resource is presented to the network users
or applica ons and used for the reserva on and control of some parts of the resource (or the whole resource). Resource
descrip on can be also used internally in HAL, for example, for the transla on of OpenFlow requests into device-specific
configura on. In ALIEN we employ different approaches for resource descrip on as appropriate by the device type, as
explained in the remainder of this sec on.

4.3.1 Resources in Programmable Packet Switching Devices

Programmable packet switching devices, such as network processors and CPU-based switches, have a basic device structure
(i.e. flow-tables, ports) which is coherent with the OpenFlow data model. However, the device programmability features
specific to each pla orm open a new aspect of datapath management. The node management system (could be performed
by the OpenFlow controller) may provide knowledge about the required data plane protocols.

Protocol descrip on contains the header format and header placement within the packet and allows a device to locate,
parse, modify or remove such a protocol header during packet processing. An example of such descrip on, using the P4
language [12] is presented below. The network headers descrip on contains fields labels, posi on from the beginning of
the header and bit length meaning are presented here:

header ethernet {

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

28

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Figure 4.1: Implementa on of the Logical Switch Instances management within the HAL architecture.

fields {
dst_addr : 48; // width in bits
src_addr : 48;
ethertype : 16;

}
}

header ipv4 {
fields {

__skip__ : 8; // not interpreted bits
dscp : 6;
ecn : 2;
__skip__ : 56;
src_ip : 32;
dst_ip : 32;
__skip__ : 16;
ip_proto : 8;

}
}
header udp {
field {

src_port : 16;
dst_port : 16;
__skip__ : 32;

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

29

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

}
}
header vxlan {
field {

__skip__ : 32;
segment_id : 24;
__skip__ : 8;

}
}

Some header fields, which are not required during packet processing in the datapath, and are not used by flow entries,
are to be interpreted by the special direc ve __skip__. The sequence of headers parsing within the packet is specified in
the following descrip on:

parser ethernet {
switch(ethertype) { \\ header field based lookup

case 0x800: ipv4; \\ what is next header
}

}
parser ipv4 {
switch(ip_proto) {

case 0x11: udp;
}

}
parser udp {
switch(dst_port) {

case 0x12B5: vxlan;
}

}

As listed above, you can dis nguish the next-parsed header by a specific value of any proper header field.
When these descrip ons are applied over a network node, then the node forwarding engine is capable of parsing and

processing based only on Ethernet, IPv4, UDP and VXLAN headers. Then, other header fields passed in flow entries are not
recognized and flow entries are skipped.

During the whole device life- me, one set of protocols may be replaced with a new set of protocols, depending on
the actual network device role in the network. The current implementa on of HAL does not support data plane protocol
knowledge management. Deliverable [D2.2] describes a proposi on of datapath architecture that could provide protocol
knowledge management capabili es which may be implemented in the form of the early prototype ll the end of the ALIEN
project.

4.3.2 Resources in Lightpath Devices

As described earlier in this deliverable, circuit switches are func oning in a completely different way compared to the packet
processing devices, and thus require a new set of resource descrip on. The ALIEN project has decided to use the proposed
extension to the OpenFlow protocol for circuit switched devices [4] that have been already included in the succeeding
versions of the protocol (i.e. v1.4). This extension was implemented in the HAL prototype for L0 switch (ADVA DWDM
system).

The structure used to describe a physical port in packet processing devices has been modified in order to be able to
describe a circuit switch port. At this point we should note the existence of peer_datapath_id and peer_port_no fields since
it is not possible in op cal networks to discover neighbors using LLDP frames.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

30

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

/*
* Circuit switch physical port description
*/
struct ofp_phy_cport {

uint16_t port_no;
uint8_t hw_addr[OFP_ETH_ALEN]; /* Ethernet address - 6-byte */
uint8_t name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated - 16 byte */

uint32_t config; /* Bitmap of OFPPC_* flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_* that describe features. All bits zeroed if
* unsupported or unavailable. */
uint32_t curr; /* Current features. */
uint32_t advertised; /* Features being advertised by the port. */
uint32_t supported; /* Features supported by the port. */
uint32_t peer; /* Features advertised by peer. */

uint32_t supp_sw_tdm_gran; /* TDM switching granularity OFPTSG_* flags */
uint16_t supp_swtype; /* Bitmap of switching type OFPST_* flags */
uint16_t peer_port_no; /* Discovered peer's switchport number */
uint64_t peer_datapath_id; /* Discovered peer's datapath id */
uint16_t num_bandwidth; /* Identifies number of bandwidth array elements */
uint8_t pad[6]; /* Align to 64 bits */
uint64_t bandwidth[0]; /* Bitmap of OFPCBL_* or OFPCBT_* flags */

};

The cfow_modmessage contains the so-called logical equivalent of the ofp_match structure and it is the message sent
to the circuit switch in order to modify its cross-connect table.

/* Circuit flow setup, modification and teardown (controller -> datapath) */
struct ofp_cflow_mod {

struct ofp_header header; /* Openflow header */
uint16_t command; /* one of OFPFC_* commands */
uint16_t hard_timeout; /* max time to connection tear down,

if 0 then explicit tear-down required */
uint8_t pad[4]; /* Align to 64 bits */
struct ofp_connect_ocs connect; /* 8B followed by variable length arrays */
struct ofp_action_header actions[0]; /* variable number of action */

};

The ofp_connect_ocs structure describes the cross-connected ports inside the switch:

/* Description of a cross-connection */

struct ofp_connect_ocs {
uint16_t wildcards; /* identifies ports to use below */
uint16_t num_components; /* identifies number of cross-connects

to be made - num array elements */

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

31

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

uint8_t pad[4]; /* Align to 64 bits */

uint16_t in_port[0]; /* OFPP_* ports - real or virtual */
uint16_t out_port[0]; /* OFPP_* ports - real or virtual */

struct ofp_tdm_port in_tport[0]; /* Description of a TDM channel */
struct ofp_tdm_port out_tport[0];

struct ofp_wave_port in_wport[0]; /* Description of a Lambda channel */
struct ofp_wave_port out_wport[0];

};

Finally, a cport_statusmessage has been added to allow the switch to inform the controller about changes in the state
of the physical circuit port:

struct ofp_cport_status {
struct ofp_header header;
uint8_t reason; /* One of OFPPR_* */
uint8_t pad[7]; /* Align to 64 bits */
struct ofp_phy_cport desc; /* Circuit port description */

};

4.3.3 Resources in Point-to-Mul point Devices

Point-to-mul point devices (GEPON and DOCSIS devices in the ALIEN project) are exposed to the network management
(and network control) as a OpenFlow network node, abstrac ng the whole access network.

4.3.3.1 Resources in DOCSIS Architecture

DEVICE MAP
Certain structures are required in order to maintain the coherence between all devices connected to the ALIEN-Hardware
INtegra on Proxy (ALHINP) and the virtualmodel exposed to theOpenFlow controller. As soon as a cablemodem is detected
in the network, ALHINP creates the corresponding structure for it. A er assigning the corresponding VLAN_VID, the rest of
the structure is filled with the parameters as soon as they are discovered (no rela onship between OUI and CM is required
in advance as they are dynamically detected by ALHINP).

struct device {
uint64_t MAC_OUI; /*MAC of the OUI*/
uint64_t DPID; /*DPID of the OUI*/
uint16_t vlan; /*Vlan provisioned over CMTS*/

};

std::map< uint64_t mac_CM, struct device> devicemap;

The devicemap stores for each cablemodem the corresponding OpenFlow Parameters and VLAN assigned by ALHINP
proxy. This map is dynamically filled when a connec on from OUI or CM is detected.

PORT STRUCTURES

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

32

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

struct realport {
uint64_t DPID; /*DPID of the OUI*/
uint32_t realport_id; /*Real port ID at DPID*/

};

std::map< uint32_t virtualport, struct realport> portmap;

The portmap stores the ports enabled by the proxy, which are virtually exposed to the controller. For each virtualport
its corresponding realport and OUI_DPID is stored.

ALHINP CONFIGURATION
The configura on of ALHINP,which is the component that orchestrates all the devices of the architecture,is stored in the
next structure, where network user-defined parameters are defined.

struct ALHINP {
uint64_t ALHINP_DPID; /*DPID of ALHINP exposed to the controller*/

std::string CTRL_IP; /*Controller IP*/
std::string CTRL_OF_VERSION; /*OF version of the controller */
std::string CTRL_PORT; /*OF Port */

std::string LISTEN_IP_AGS; /*OF AGS LISTENING IP */
std::string LISTEN_PORT_AGS; /*OF AGS LISTENING PORT */
uint32_t CMTS_PORT; /*Port where CMTS is attached*/
uint32_t DPS_PORT; /*Port where Provisioning system is attached*/
uint32_t ALHINP_PORT; /*Port for the ALHINP OUI connections*/

std::string LISTEN_IP_OUI; /*OF OUI listening IP */
std::string LISTEN_PORT_OUI; /*OF OUI listening Port */
uint32_t NETPORT; /*Port connected to the Cablemodem*/

std::string DPS_IP; /*DOCSIS Provisioning server IP */
std::string CMTS_IP; /*CMTS IP */

};

This structure describes the overall ALHINP configura on parameters, given by the user, according to the architecture
setup.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

33

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

5 Summary
This document provides the implementa on details of Hardware Abstrac on Layer (HAL). The HAL provides a pla orm
for OpenFlow protocol implementa on on non-OpenFlow capable network devices. Two sub-layers which comprise HAL
are Cross-Hardware Pla orm layer and Hardware-Specific layer. Based on the design specifica ons developed within the
ALIEN project, this document provides an account of implemen ng the two aforemen oned layers. The goal of Cross-
Hardware Pla orm layer is to provide a device abstrac on using the services of Hardware-Specific layer which has to deal
with the underlying hardware pla ormpeculiari es. The Cross-Hardware Pla orm layer implementa on is unanimous for all
hardware pla orms whichmakes it an ideal place to implement func onali es like networkmanagement and virtualiza on.
Moreover, it also helps achieve an OpenFlow version agnos c device abstrac on. The implementa on of Hardware-Specific
layer has to be carried out for each underlying hardware pla orm and some mes it is even different from device to device
within the same network pla orm category. Therefore, depending on the hardware architecture of the underlying device,
the hardware-specific layer has to be implemented adap vely to offer the func onality described in the specifica ons.

The document describes the implementa on details of Cross-Hardware Pla orm layer and its plug-ins, i.e., NETCONF
and Virtualiza on Agent. In addi on, the experiences are shared for implemen ng Hardware-Specific layer on most widely
used network device pla orms such as programmable hardware, transport network devices (op cal or circuit switch) and
closed pla orm with proprietary communica on protocols such as GEPON. By achieving func onal implementa ons of
Hardware-Specific layer on the aforemen oned devices and its integra onwith the Cross-Hardware Pla orm layer to realize
OpenFlow capabili es validates the feasibility of HAL architecture design and its specifica ons.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

34

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

References
[1] EZappliance: NP-3 Network Processor. http://www.ezchip.com/p_np3.htm.

[2] NetFPGA. http://netfpga.org/.

[3] Revised OpenFlow Library. http://www.roflibs.org/.

[4] Extension to the OpenFlow Protocol in support of Circuit Switching. http://archive.openflow.org/wk/images/
8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf, 2010.

[5] Deliverable D3.1: Hardware pla orms and switching constraints. http://www.fp7-alien.eu/files/
deliverables/D3.1-ALIEN-final.pdf, 2013.

[6] Deliverable D3.2: Specifica on of hardware specific parts. http://www.fp7-alien.eu/files/deliverables/
D3.2-ALIEN-final.pdf, 2013.

[7] Deliverable D2.2: Specifica on of Hardware Abstrac on Layer. http://www.fp7-alien.eu/files/
deliverables/D2.2-ALIEN-final.pdf, 2014.

[8] OpenFlow Specifica ons. https://www.opennetworking.org/sdn-resources/onf-specifications/
openflow, 2014.

[9] Ł. Ogrodowczyk, et al. Hardware Abstrac on Layer for Non-OpenFlow Capable Devices. In Proceedings of the TERENA
Networking Conference (TNC), May 2014.

[10] D. Parniewicz, et al. Design and Implementa on of an OpenFlow Hardware Abstrac on Layer. In Proceedings of the
ACM SIGCOMMWorkshop on Distributed Cloud Compu ng (DCC), August 2014. Accepted for publica on.

[11] R. Doriguzzi Corin et al. VeRTIGO: Network Virtualiza on and Beyond. In Proceedings of the European Workshop on
So ware Defined Networking (EWSDN), pages 24--29, Oct 2012.

[12] D. Heimbigner. P4: A Logic Language for Process Programming. In Proceedings of the 5th Interna onal So ware
Process Workshop on Experience with So ware Process Models, ISPW '90, pages 67--70, Los Alamitos, CA, USA, 1990.

[13] R. Enns, et al. Network Configura on Protocol (NETCONF). https://tools.ietf.org/html/rfc6241, 2011.

[14] R. Sherwood, et al. Carving Research Slices out of Your Produc on Networks with OpenFlow. SIGCOMM Comput.
Commun. Rev., 40(1):129--130, January 2010.

[15] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the USENIX Annual Technical Conference,
pages 101--112, Boston, MA, 2012.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

35

http://www.ezchip.com/p_np3.htm
http://netfpga.org/
http://www.roflibs.org/
http://archive.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf
http://archive.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf
http://www.fp7-alien.eu/files/deliverables/D3.1-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.1-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D2.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D2.2-ALIEN-final.pdf
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://tools.ietf.org/html/rfc6241

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Acronyms
AFA: Abstracted Forwarding API
ALHINP: ALIEN Hardware INtegra on Proxy
API: Applica on Programming Interface
CM: Cable Modem
CMM: Control and Management Module
CHPL: Cross-Hardware Pla orm Layer
DOCSIS: Data Over Cable Service Interface Specifica on
FPGA: Field Programmable Fate Gate Array
HAL: Hardware Abstrac on Layer
HSL: Hardware Specific Layer
HSP: Hardware Specific Part
HPA: Hardware Pipeline API
LTE: Long Term Evolu on
NMS: Network Management System
NPU: Network Processing Unit
PAD: Programmable Abstrac on for Datapath
ROADM: Reconfigurable Op cal Add drop Module
ROFL: Revised OpenFlow Library
SDN: So ware Defined Networking
OF: OpenFlow
TCAM: Ternary Content-Addressable Memory
TCP: Transmission Control Protocol
TLS: Transport Layer Security
VA: Virtualiza on Agent
VG: Virtual Gateway
VoD: Video on-Demand
xDPd: Extensible Data Path Daemon

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

36

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Appendix A

VA subset VA abstract method VA method implementa on in ROFL
Slice Port presence Func on declara on:

bool has_port(string port_name);
located in:
virtual-agent/slice.h

Virtualiza on
Agent

Is ac ve Func on declara on:
bool is_ac ve();
located in:
virtual-agent/virtualagent.h

Add slice Func on declara on:
void add_slice(slice∗ slice_to_add, bool connect);
located in:
virtual-agent/virtualagent.h

Add flowspace Func on declara on:
void add_flowspace(flowspace∗ flowspace_to_add);
located in:
virtual-agent/virtualagent.h

Add switch Func on declara on:
void add_switch(va_switch∗ switch_to_add);
located in:
virtual-agent/virtualagent.h

Check slice existence Func on declara on:
bool check_slice_existance(string slice_name, uint64_t dpid);
located in:
virtual-agent/virtualagent.h

Flow Entry Analysis
and modifica on

Func on declara on:
of1x_flow_entry_t∗ flow_entry_analysis(cofctl ∗ctl, of1x_flow_entry_t
∗entry, openflow_switch∗ sw);
located in:
virtual-agent/virtualagent.h

Ac ons analysis and
modifica on

Func on declara on:
of1x_ac on_group_t∗ ac on_analysis(cofctl ∗ctl, of1x_ac on_group_t
∗ac on_group, openflow_switch∗ sw);
located in:
virtual-agent/virtualagent.h

Group analysis and
modifica on

Func on declara on:
cofmsg_group_mod∗ group_mod_analysis(cofctl ∗ctl, cofmsg_group_mod
∗msg, openflow_switch∗ sw);
located in:
virtual-agent/virtualagent.h

Flowspace Stores the slices
flowspaces

Func on declara on:
struct flowspace;
located in:
virtual-agent/flowspace.h

VA Virtual
Switch

Check Flowspace
match

Func on declara on:
bool check_match(const of1x_packet_matches_t pkt,
std::list<flowspace_match_t∗> it);
located in:
virtual-agent/va_switch.h

VA Virtual
Switch

Compare match Func on declara on:
bool compare_match_flow(const of1x_packet_matches_t∗ pkt,
flowspace_match_t∗ it);
located in:
virtual-agent/va_switch.h

Table A.1: Virtualiza on Agent implementa on within the xDPd’s code

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

37

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

AFA subset AFA abstract
method

AFA method implementa on in ROFL

Datapath
Management

Init-driver Func on declara on:
hal_result_t hal_driver_init (const char∗ extra_params);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Destroy-driver Func on declara on:
hal_result_t hal_driver_destroy (void);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Create-switch Func on declara on:
hal_result_t hal_driver_create_switch (char∗ name, uint64_t dpid,
of_version_t of_version, unsigned int num_of_tables, int∗ma_list);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Get-switch Func on declara on:
of_switch_snapshot_t∗ hal_driver_get_switch_snapshot_by_dpid(uint64_t
dpid);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Destroy-switch Func on declara on:
hal_result_t hal_driver_destroy_switch_by_dpid (uint64_t dpid);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Get-ports Func on declara on:
switch_port_name_list_t∗ hal_driver_get_all_port_names (void);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Get-port Func on declara ons:
switch_port_snapshot_t∗ hal_driver_get_port_snapshot_by_name (const
char ∗name);
switch_port_snapshot_t∗ hal_driver_get_port_snapshot_by_num (uint64_t
dpid, unsigned int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Enable-port Func on declara ons:
hal_result_t hal_driver_bring_port_up (const char∗ name);
hal_result_t hal_driver_bring_port_down_by_num (uint64_t dpid, unsigned
int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Datapath
Management

Disable-port Func on declara ons:
hal_result_t hal_driver_bring_port_down (const char∗ name);
hal_result_t hal_driver_bring_port_down_by_num (uint64_t dpid, unsigned
int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

A ach-port-to-
switch

Func on declara on:
hal_result_t hal_driver_a ach_port_to_switch (uint64_t dpid, const char∗
name, unsigned int∗ port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Detach-port-from-
switch

'Func on declara ons:'
hal_result_t hal_driver_detach_port_from_switch (uint64_t dpid, const char∗
name);
hal_result_t hal_driver_detach_port_from_switch_at_port_num (uint64_t
dpid, const unsigned int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

38

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Datapath
Configura on

Set-port-drop Func on declara on:
hal_result_t hal_driver_of1x_set_port_drop_received_config (uint64_t dpid,
unsigned int port_num, bool drop_received);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-port-forward Func on declara on:
hal_result_t hal_driver_of1x_set_port_forward_config (uint64_t dpid,
unsigned int port_num, bool forward);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-port-packet-in Func on declara on:
hal_result_t hal_driver_of1x_set_port_generate_packet_in_config (uint64_t
dpid, unsigned int port_num, bool generate_packet_in);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-port-adver se Func on declara on:
hal_result_t hal_driver_of1x_set_port_adver se_config (uint64_t dpid,
unsigned int port_num, uint32_t adver se);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-pipeline-config Func on declara on:
hal_result_t hal_driver_of1x_set_pipeline_config (uint64_t dpid, unsigned int
flags, uint16_t miss_send_len);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Set-table-config Func on declara on:
hal_result_t hal_driver_of1x_set_table_config (uint64_t dpid, unsigned int
table_id, of1x_flow_table_miss_config_t config);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Datapath
Configura on

Packet-out Func on declara on:
hal_result_t hal_driver_of1x_process_packet_out (uint64_t dpid, uint32_t
buffer_id, uint32_t in_port, of1x_ac on_group_t∗ ac on_group, uint8_t∗
buffer, uint32_t buffer_size);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Add-flow Func on declara on:
hal_result_t hal_driver_of1x_process_flow_mod_add (uint64_t dpid, uint8_t
table_id, of1x_flow_entry_t∗∗ flow_entry, uint32_t buffer_id, bool
check_overlap, bool reset_counts);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Modify-flow Func on declara on:
hal_result_t hal_driver_of1x_process_flow_mod_modify (uint64_t dpid,
uint8_t table_id, of1x_flow_entry_t∗∗ flow_entry, uint32_t buffer_id,
of1x_flow_removal_strictness_t strictness, bool reset_counts);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Delete-flow Func on declara on:
hal_result_t hal_driver_of1x_process_flow_mod_delete (uint64_t dpid,
uint8_t table_id, of1x_flow_entry_t∗ flow_entry, uint32_t out_port, uint32_t
out_group, of1x_flow_removal_strictness_t strictness);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

39

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Get-flow-stats Func on declara on:
of1x_stats_flow_msg_t∗ hal_driver_of1x_get_flow_stats (uint64_t dpid,
uint8_t table_id, uint32_t cookie, uint32_t cookie_mask, uint32_t out_port,
uint32_t out_group, of1x_match_group_t ∗const matches);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Add-group Func on declara on:
rofl_of1x_gm_result_t hal_driver_of1x_group_mod_add (uint64_t dpid,
of1x_group_type_t type, uint32_t id, of1x_bucket_list_t ∗∗buckets);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Modify-group Func on declara on:
rofl_of1x_gm_result_t hal_driver_of1x_group_mod_modify (uint64_t dpid,
of1x_group_type_t type, uint32_t id, of1x_bucket_list_t ∗∗buckets);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Delete-group Func on declara on:
rofl_of1x_gm_result_t hal_driver_of1x_group_mod_delete (uint64_t dpid,
uint32_t id);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

Datapath
Configura on

Get-group-stats Func on declara ons:
of1x_stats_group_msg_t∗ hal_driver_of1x_get_group_stats (uint64_t dpid,
uint32_t id);
of1x_stats_group_msg_t∗ hal_driver_of1x_get_group_all_stats (uint64_t
dpid, uint32_t id);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_driver.h

No fica on

Add-port Func on declara on:
hal_result_t hal_cmm_no fy_port_add (switch_port_snapshot_t∗
port_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h

Modify-port Func ons declara ons:
hal_result_t hal_cmm_no fy_port_status_changed
(switch_port_snapshot_t∗ port_snapshot);
hal_result_t hal_cmm_no fy_monitoring_state_changed
(monitoring_snapshot_state_t∗monitoring_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h

Delete-port Func ons declara on:
hal_result_t hal_cmm_no fy_port_delete (switch_port_snapshot_t∗
port_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h

Packet-in Func ons declara on:
hal_result_t hal_cmm_process_of1x_packet_in (uint64_t dpid, uint8_t
table_id, uint8_t reason, uint32_t in_port, uint32_t buffer_id, uint8_t∗
pkt_buffer, uint32_t buf_len, uint16_t total_len, packet_matches_t∗
matches);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_cmm.h

Flow-removed Func ons declara on:
hal_result_t hal_cmm_process_of1x_flow_removed (uint64_t dpid, uint8_t
reason, of1x_flow_entry_t∗ removed_flow_entry);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\of1x_cmm.h

Table A.2: Abstract Forwarding API implementa on within the ROFL
project

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

40

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

HPA subset HPA abstract
method

HPA method implementa on in ROFL

Packet
opera ons

Get-packet-size Func on declara on:
uint32_t pla orm_packet_get_size_bytes (datapacket_t ∗const pkt);
located in:
/pla orm/packet.h

Get-port-in Func on declara on:
uint32_t pla orm_packet_get_port_in (datapacket_t ∗const pkt);
located in:
/pla orm/packet.h

Packet
opera ons

Get-packet-field Func on declara on:
uint64_t pla orm_packet_get_eth_src (datapacket_t ∗const pkt);
uint64_t pla orm_packet_get_eth_dst (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_eth_type (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_vlan_vid (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_vlan_pcp (datapacket_t ∗const pkt);
uint32_t pla orm_packet_get_mpls_label (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_mpls_tc (datapacket_t ∗const pkt);
bool pla orm_packet_get_mpls_bos (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_ip_proto (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_ip_ecn (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_ip_dscp (datapacket_t ∗const pkt);
uint32_t pla orm_packet_get_ipv4_src (datapacket_t ∗const pkt);
uint32_t pla orm_packet_get_ipv4_dst (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_tcp_src (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_tcp_dst (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_udp_src (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_udp_dst (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_icmpv4_type (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_icmpv4_code (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_pppoe_code (datapacket_t ∗const pkt);
uint8_t pla orm_packet_get_pppoe_type (datapacket_t ∗const pkt);
uint16_t pla orm_packet_get_pppoe_sid (datapacket_t ∗const pkt);
located in:
/pla orm/packet.h

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

41

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Packet
opera ons

Set-packet-field Func on declara on:
void pla orm_packet_set_eth_src (datapacket_t∗ pkt, uint64_t eth_src);
void pla orm_packet_set_eth_dst (datapacket_t∗ pkt, uint64_t eth_dst);
void pla orm_packet_set_eth_type (datapacket_t∗ pkt, uint16_t eth_type);
void pla orm_packet_set_vlan_vid (datapacket_t∗ pkt, uint16_t vlan_vid);
void pla orm_packet_set_vlan_pcp (datapacket_t∗ pkt, uint8_t vlan_pcp);
void pla orm_packet_set_mpls_label (datapacket_t∗ pkt, uint32_t label);
void pla orm_packet_set_mpls_tc (datapacket_t∗ pkt, uint8_t tc);
void pla orm_packet_set_mpls_bos (datapacket_t∗ pkt, bool bos);
void pla orm_packet_set_ip_proto (datapacket_t∗ pkt, uint8_t ip_proto);
void pla orm_packet_set_ip_dscp (datapacket_t∗ pkt, uint8_t ip_dscp);
void pla orm_packet_set_ip_ecn (datapacket_t∗ pkt, uint8_t ip_ecn);
void pla orm_packet_set_ipv4_src (datapacket_t∗ pkt, uint32_t ip_src);
void pla orm_packet_set_ipv4_dst (datapacket_t∗ pkt, uint32_t ip_dst);
void pla orm_packet_set_tcp_src (datapacket_t∗ pkt, uint16_t tcp_src);
void pla orm_packet_set_tcp_dst (datapacket_t∗ pkt, uint16_t tcp_dst);
void pla orm_packet_set_udp_src (datapacket_t∗ pkt, uint16_t udp_src);
void pla orm_packet_set_udp_dst (datapacket_t∗ pkt, uint16_t udp_dst);
void pla orm_packet_set_icmpv4_type (datapacket_t∗ pkt, uint8_t type);
void pla orm_packet_set_icmpv4_code (datapacket_t∗ pkt, uint8_t code);
void pla orm_packet_set_pppoe_type (datapacket_t∗ pkt, uint8_t type);
void pla orm_packet_set_pppoe_code (datapacket_t∗ pkt, uint8_t code);
void pla orm_packet_set_pppoe_sid (datapacket_t∗ pkt, uint16_t sid);
located in:
/pla orm/packet.h

Copy- me-to-live Func on declara on:
void pla orm_packet_copy_ l_out (datapacket_t∗ pkt);
located in:
/pla orm/packet.h

Decrement- me-to-
live

Func on declara on:
void pla orm_packet_dec_nw_ l (datapacket_t∗ pkt);
located in:
/pla orm/packet.h

Packet
opera ons

Pop-tag Func on declara on:
void pla orm_packet_pop_vlan (datapacket_t∗ pkt);
void pla orm_packet_pop_mpls (datapacket_t∗ pkt, uint16_t ether_type);
void pla orm_packet_pop_pppoe (datapacket_t∗ pkt, uint16_t ether_type);
located in:
/pla orm/packet.h

Push-tag Func on declara on:
void pla orm_packet_push_vlan (datapacket_t∗ pkt, uint16_t ether_type);
void pla orm_packet_push_mpls (datapacket_t∗ pkt, uint16_t ether_type);
void pla orm_packet_push_pppoe (datapacket_t∗ pkt, uint16_t ether_type);
located in:
/pla orm/packet.h

Drop-packet Func on declara on:
void pla orm_packet_drop (datapacket_t∗ pkt);
located in:
/pla orm/packet.h

Output-packet Func on declara on:
void pla orm_packet_output (datapacket_t∗ pkt, switch_port_t∗ port);
located in:
/pla orm/packet.h

Memory
management

Allocate-memory Func on declara on:
void∗ pla orm_malloc(size_t length);
located in:
/pla orm/memory.h

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

42

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Free-memory Func on declara on:
void pla orm_free(void∗ data);
located in:
/pla orm/memory.h

Copy-memory Func on declara on:
void∗ pla orm_memcpy (void∗ dst, const void∗ src, size_t length);
located in:
/pla orm/memory.h

Move-memory Func on declara on:
void∗ pla orm_memmove (void∗ dst, const void∗ src, size_t lengt);
located in:
/pla orm/memory.h

Set-memory Func on declara on:
void∗ pla orm_memset (void∗ src, int c, size_t length);
located in:
/pla orm/memory.h

Mutex &
Counter
atomic
opera ons

Init-mutex Func on declara on:
pla orm_mutex_t∗ pla orm_mutex_init (void∗ params);
located in:
/pla orm/lock.h

Mutex &
Counter
atomic
opera ons

Destroy-mutex Func on declara on:
void pla orm_mutex_destroy (pla orm_mutex_t∗mutex);
located in:
/pla orm/lock.h

Lock-mutex Func on declara on:
void pla orm_mutex_lock (pla orm_mutex_t∗mutex);
located in:
/pla orm/lock.h

Unlock-mutex Func on declara on:
void pla orm_mutex_unlock (pla orm_mutex_t∗mutex);
located in:
/pla orm/lock.h

Increase-counter Func on declara on:
void pla orm_atomic_inc32 (uint32_t∗ counter, pla orm_mutex_t∗mutex);
void pla orm_atomic_inc64 (uint64_t∗ counter, pla orm_mutex_t∗mutex);
located in:
/pla orm/atomic_opera ons.h

Decrease-counter Func on declara on:
void pla orm_atomic_dec32 (uint32_t∗ counter, pla orm_mutex_t∗mutex);
void pla orm_atomic_dec64 (uint64_t∗ counter, pla orm_mutex_t∗mutex);
located in:
/pla orm/atomic_opera ons.h

No fica on Process-packet-in-
pipeline

Func on declara on:
void __of1x_process_packet_pipeline (const of_switch_t ∗sw, datapacket_t
∗const pkt);
void of1x_process_packet_out_pipeline (const of1x_switch_t ∗sw,
datapacket_t ∗const pkt, const of1x_ac on_group_t∗ apply_ac ons_group);
located in:
/openflow/openflow1x/pipeline/of1x_pipeline_pp.h

Table A.3: Hardware Pipeline API implementa on within the ROFL
project

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

43

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Fu
nc

on
De

cl
ar
a

on
De

sc
rip

on
vi
rt
ua

lv
oi
d
in
it(
vo
id
);

In
i
al
iza

on
of

th
e
Pl
ug

-In
vi
rt
ua

ls
td
::s
tr
in
g
ge
t_
na

m
e(
vo
id
);

Re
tr
ie
va
lo

ft
he

Pl
ug

-In
na

m
e

vi
rt
ua

lv
oi
d
no

fy
_p

or
t_
ad

de
d(
co
ns
ts
w
itc
h_

po
rt
_s
na

ps
ho

t_
t∗

po
rt
_s
na

ps
ho

t)
;

N
o

fic
a

on
of

th
e
Pl
ug

-In
,t
ha

ta
ne

w
po

rt
w
as

ad
de

d
vi
rt
ua

lv
oi
d
no

fy
_p

or
t_
a

ac
he

d(
co
ns
ts
w
itc
h_

po
rt
_s
na

ps
ho

t_
t∗

po
rt
_s
na

ps
ho

t)
;

N
o

fic
a

on
of

th
e
Pl
ug

-In
,t
ha

ta
ne

w
po

rt
w
as

a
ac
he

d
to

a
LS
I

vi
rt
ua

lv
oi
d
no

fy
_p

or
t_
st
at
us
_c
ha

ng
ed

(c
on

st
sw

itc
h_

po
rt
_s
na

ps
ho

t_
t∗

po
rt
_s
na

ps
ho

t)
;

N
o

fic
a

on
of

th
e
Pl
ug

-In
,t
ha

ta
po

rt
st
at
us

ch
an

ge
d

vi
rt
ua

lv
oi
d
no

fy
_p

or
t_
de

ta
ch
ed

(c
on

st
sw

itc
h_

po
rt
_s
na

ps
ho

t_
t∗

po
rt
_s
na

ps
ho

t)
;

N
o

fic
a

on
of

th
e
Pl
ug

-In
,t
ha

ta
po

rt
w
as

de
ta
ch
ed

fr
om

a
LS
I

vi
rt
ua

lv
oi
d
no

fy
_p

or
t_
de

le
te
d(
co
ns
ts
w
itc
h_

po
rt
_s
na

ps
ho

t_
t∗

po
rt
_s
na

ps
ho

t)
;

N
o

fic
a

on
of

th
e
Pl
ug

-In
,t
ha

ta
ne

w
po

rt
w
as

de
le
te
d

vi
rt
ua

lv
oi
d
no

fy
_m

on
ito

rin
g_
st
at
e_

ch
an

ge
d(
co
ns
t

m
on

ito
rin

g_
sn
ap

sh
ot
_s
ta
te
_t
∗
m
on

ito
rin

g_
sn
ap

sh
ot
);

N
o

fic
a

on
of

th
e
Pl
ug

-In
,t
ha

ta
m
on

ito
re
d
st
at
e
ch
an

ge
d.

Ta
bl
e
A.
4:

In
te
rfa

ce
sf
or

Pl
ug

-in
M
an

ag
er

He
ad

er
Fi
le

De
sc
rip

on
xd
pd

/v
irt
ua

l-a
ge
nt
/v
a_
sw

itc
h.
h

sw
itc
h
se

ng
sf
or

Vi
rt
ua

liz
a

on
Ag

en
td

at
ab

as
e

vx
dp

d/
vi
rt
ua

l-a
ge
nt
/fl
ow

sp
ac
e.
h

flo
w
sp
ac
e
im

pl
em

en
ta

on
xd
pd

/v
irt
ua

l-a
ge
nt
/s
lic
e.
h

sli
ce

im
pl
em

en
ta

on
xd
pd

/v
irt
ua

l-a
ge
nt
/v
irt
ua

la
ge
nt
.h

VA
de

fin
i
on

s
Ta
bl
e
A.
5:

He
ad

er
fil
es

de
fin

in
g
Sl
ic
er

fu
nc

on
s

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

44

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

He
ad

er
Fi
le

De
sc
rip

on
xd
pd

/m
an

ag
em

en
t/
pl
ug

in
s/
co
nfi

g/
vi
rt
ua

l-a
ge
nt
/fl
ow

sp
ac
e_

sc
op

e.
h

flo
w
sp
ac
e
ru
le
s

xd
pd

/m
an

ag
em

en
t/
pl
ug

in
s/
co
nfi

g/
vi
rt
ua

l-a
ge
nt
/s
lic
e_

sc
op

e.
h

sli
ce

se
ng

sa
nd

co
nt
ro
lle
rs
’d

et
ai
ls

xd
pd

/m
an

ag
em

en
t/
pl
ug

in
s/
co
nfi

g/
vi
rt
ua

l-a
ge
nt
/v
irt
ua

l-a
ge
nt
_s
co
pe

.h
vi
rt
ua

liz
a

on
ag
en

ts
e

ng
s

xd
pd

/m
an

ag
em

en
t/
pl
ug

in
s/
co
nfi

g/
ro
ot
_s
co
pe

.∗
re
gi
st
ra

on
of

th
e
ab

ov
e-
de

sc
rib

ed
se

ng
st
o
th
e
pl
ug

in
m
an

ag
er

Ta
bl
e
A.
6:

He
ad

er
fil
es

de
fin

in
g
ac
ce
ss

fu
nc

on
sf
or

vi
rt
ua

liz
a

on
ag
en

t
da

ta
ba

se

He
ad

er
Fi
le

De
sc
rip

on
xd
pd

/o
pe

nfl
ow

/e
nd

po
in
t.h

ad
de

d
fu
nc

on
st
ha

ta
llo

w
th
e
VA

to
ob

ta
in

th
e
po

in
te
rs
to

th
e
co
nt
ro
lle
rs

co
nn

ec
te
d
to

th
e
en

dp
oi
nt

xd
pd

/o
pe

nfl
ow

/o
pe

nfl
ow

_s
w
itc
h

ad
de

d
a
fu
nc

on
to

re
tr
ie
ve

th
e
en

dp
oi
nt

in
st
an

ce
xd
pd

/o
pe

nfl
ow

/o
pe

nfl
ow

1Y
/o
pe

nfl
ow

1Y
_s
w
itc
h

ad
de

d
a
fu
nc

on
th
at

cr
ea
te
sn

ew
vi
rt
ua

ls
w
itc
he

sw
ith

no
co
nt
ro
lle
rs
an

d
on

e
th
at

ad
ds

co
nt
ro
lle
rs
to

th
e
vi
rt
ua

ls
w
itc
he

s.
xd
pd

/o
pe

nfl
ow

/o
pe

nfl
ow

1Y
/o
f1
Y_

en
dp

oi
nt

ad
de

d
th
e
co
nn

ec
on

to
th
e
VA

to
en

ab
le
th
e
sli
ci
ng

m
ec
ha

ni
sm

xd
pd

/c
m
m
.c
c

ad
de

d
th
e
m
ec
ha

ni
sm

th
at

se
le
ct
st
he

rig
ht

co
nt
ro
lle
rf
or

th
e
ne

w
flo

w
sb

as
ed

on
th
e
of
1X

_p
ac
ke
t_
m
at
ch
es
_t

da
ta

an
d
on

th
e
flo

w
sp
ac
e
ru
le
s.

Ta
bl
e
A.
7:

Li
st
of

xD
PD

co
de

fil
es

m
od

ifi
ed

to
en

ab
le
vi
rt
ua

liz
a

on
ag
en

t
fu
nc

on
s

He
ad

er
Fi
le

De
sc
rip

on
ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
ha

l/d
riv

er
.h

HA
L
dr
iv
er

m
an

ag
em

en
tf
un

c
on

s(
AF

A
M
an

ag
em

en
t)

ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
ha

l/c
m
m
.h

HA
L
po

rt
ev
en

tc
al
lb
ac
ks

(A
FA

N
o

fic
a

on
)

ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
ha

l/o
pe

nfl
ow

/o
pe

nfl
ow

1x
/o
f1
x/
dr
iv
er
.h

HA
L
da

ta
pa

th
co
nfi

gu
ra

on
fu
nc

on
s(
AF

A
Co

nfi
gu

ra
on

)
ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
ha

l/o
pe

nfl
ow

/o
pe

nfl
ow

1x
/o
f1
x/
cm

m
.h

HA
L
da

ta
pa

th
ev
en

tc
al
lb
ac
ks

(A
FA

N
o

fic
a

on
)

Ta
bl
e
A.
8:

A
se
to

fC
he

ad
er

fil
es

co
nt
ai
ni
ng

AF
A
AP

If
un

c
on

de
cl
ar
a

on
s

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

45

DR
AF
T

D2.3 Report on Implementa on of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

He
ad

er
Fi
le

De
sc
rip

on
ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
pi
pe

lin
e/
pl
a

or
m
/p
ac
ke
t.h

pi
pe

lin
e
pa

ck
et

pr
oc
es
sin

g
fu
nc

on
s

(H
PA

Pa
ck
et

O
pe

ra
on

s)
ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
pi
pe

lin
e/
pl
a

or
m
/m

em
or
y.
h

a
se
to

fc
al
ls
us
ed

by
lib

ra
ry

to
pe

rfo
rm

dy
na

m
ic
m
em

or
y

al
lo
ca

on
/d
ea
llo

ca
on

,a
sw

el
la
so

th
er

m
em

or
y
op

er
a

on
s(
lik
e
co
py

or
m
ov
e)

(H
PA

M
em

or
y
m
an

ag
em

en
t)

ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
pi
pe

lin
e/
pl
a

or
m
/lo

ck
.h

a
se
to

fc
al
ls
us
ed

by
HP

A
to

pe
rfo

rm
m
ut
ua

l
ex
cl
us
io
n
op

er
a

on
s(
HP

A
Lo
ck

op
er
a

on
)

ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
pi
pe

lin
e/
pl
a

or
m
/a
to
m
ic
/o
pe

ra
on

s.
h

a
se
to

fc
al
ls
us
ed

by
HP

A
to

pe
rfo

rm
co
un

te
rs
in
cr
em

en
ts
(H
PA

Co
un

te
r

At
om

ic
O
pe

ra
on

s)
ro
fl-
co
re
/s
rc
/r
ofl

/d
at
ap

at
h/
pi
pe

lin
e/
op

en
flo

w
/o
pe

nfl
ow

1x
/p
ip
el
in
e/

of
1x
/p
ip
el
in
e.
h

HP
A
pi
pe

lin
e
pa

ck
et

pr
oc
es
sin

g
ro
u

ne
s(
HP

A
N
o

fic
a

on
)

Ta
bl
e
A.
9:

A
se
to

fC
he

ad
er

fil
es

co
nt
ai
ni
ng

HP
A
fu
nc

on
de

cl
ar
a

on
s

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

46

	Excecutive Summary
	Introduction
	HAL Architecture Overview
	Cross-Hardware Platform Layer
	Hardware Specific Layer

	Software Development in ALIEN
	Deliverable Outline

	Cross-Hardware Platform Layer Implementation
	ROFL
	OpenFlow Endpoints
	OpenFlow Pipeline

	xDPd
	Control and Management Module
	Plug-in Manager
	Slicer

	APIs
	NETCONF
	Abstract Forwarding API
	Hardware Pipeline API

	Hardware-Specific Layer Implementation
	Packet Switching Devices
	X86-based Packet Processing Devices
	Programmable Network Processors

	Lightpath Devices
	Point-to-MultiPoint Networks
	DOCSIS Access Network
	GEPON Access Network

	Resource Reservation and Virtualization
	Optical Resource Reservation and Control
	Resource Virtualization
	Resource Description
	Resources in Programmable Packet Switching Devices
	Resources in Lightpath Devices
	Resources in Point-to-Multipoint Devices

	Summary
	References
	Acronyms
	Appendix A

