‘
‘e
y +
A L I E N

Abstraction Layer for Implementation of Extensions in programmable Networks

Collaborative project co-funded by the European Commission within the Seventh Framework Programme

Grant agreement no: 317880

Project acronym: ALIEN

Project full title: Abstraction Layer for Implementation of Extensions,in programmable Networks
Project start date: 01/10/12

Project duration: 24 months

Deliverable D2.3: Report on Implementation of the Common Part of
an OpenFlow Datapath Element and the Extended FlowVisor

Due date: 31/05/2014
Submission date: 12/06/2014
Editor: Umar Toseef (EICT)

Internal reviewer: Reza Nejabati (UNIVBRIS)

Author list: Umar Toseef, Adel Zaalouk, Kostas Pentikousis (EICT), Artur Binczewski, Bar-
tosz Belter, tukasz Ogrodowczyk, Iwo Olszewski, Damian Parniewicz (PSNC), Ha-
gen Woesner, Tobias Jungel (BISDN), Jon Matias, Eduardo Jacob, Victor Fuentes
(UPV/EHU), Richard G. Clegg (UCL), Roberto Doriguzzi (Create-Net), Marek
Michalski, Remigiusz Rajewski, Mariusz Zal (PUT), Tasos Vlachogiannis (UNI-
VBRIS)

Dissemination level

PU: Public

PP: Restricted to other programme participants (including the Commission Services)

RE: Restricted to a group specified by the consortium (including the Commission Services)
CO: Confidential, only for members of the consortium (including the Commission Services)

oood

©Authors and their corresponding institutions License: CC-BY-NC http://creativecommons.org/licenses/by-nc/4.0/legalcode
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page.

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project:
Deliverable Number:
Date of Issue:

ALIEN (Grant Agr. No. 317880)
D2.3
12/06/2014

A

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

Abstract

This document describes the implementation details of the Hardware Abstraction Layer (HAL) based on the design specifi-
cations provided by deliverable D2.2. It provides a precise mapping between the HAL specification and its implementation
within the overall functional architecture of HAL. It also demonstrates the feasibility of the HAL architecture by elaborat-
ing its implementation-level details for various hardware platforms. In addition, this document describes the process of
resource virtualization and optical resource reservation and control implementation in ALIEN.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 3
Date of Issue: 12/06/2014

Table of Contents

Excecutive Summary

1 Introduction

1.1 HAL Architecture Overview
1.1.1 Cross-Hardware Platform Layer.
1.1.2 Hardware SpecificLayer
1.2 Software Developmentin ALIEN
1.3 Deliverable Outline

2 Cross-Hardware Platform Layer Implementation

21 ROFL. o e e
2.1.1 OpenFlow Endpoints
2.1.2 OpenFlow Pipeline
22 xDPd
2.2.1 Control and Management Module
2.2.2 Plug-inManager
223 Slicer o
23 APIs e
231 NETCONF
2.3.2 Abstract Forwarding APl
2.3.3 Hardware Pipeline APl

3 Hardware-Specific Layer Implementation

3.1 Packet Switching Devices
3.1.1 X86-based Packet Processing Devices . .
3.1.2 Programmable Network Processors . . .

3.2 LightpathDevices

3.3 Point-to-MultiPoint Networks
3.3.1 DOCSIS Access Network
3.3.2 GEPON Access Network

4 Resource Reservation and Virtualization

4.1 Optical Resource Reservationand Control . e
4.2 Resource Virtualization L e e e e e
4.3 Resource Description L e e e e e e e e e e e
4.3.1 Resources in Programmable Packet Switching Devices
4.3.2 ResourcesinlLightpath Devices e

4.3.3 Resources in Point-to-Multipoint Devices
5 Summary
References
Acronyms

Appendix A

O 00 00 o

10
11

12
12
12
12
12
13
14
14
14
15
16
17

18
18
18
19
21
23
24
25

26
26
28
28
28
30
32

34

35

36

37

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1

High level functional architecture of HAL
High-level schematic of Cross-Hardware Platform Layer

OpenFlow entities and interfaces within the Cross-Hardware Platform Layer 10
HAL implementation over different hardware platforms 11
XDPd general architecture e e e 13
Control and Management Moduleof xDPd 13
The Virtualization Agent implementation within the HAL architecture. 15
NETCONF plugin within the HAL architecture 16
Abstract Forwarding APl within HAL architecture and implementation details 17
Hardware Pipeline APl subsets and invocationmodel 17
HAL adaptation for EZappliance network processor platform 20
HAL adaptation for NetFPGA cards i i 21
Relation between Linux core and SE-S cores in the OCTEON Plus implementation 22
HAL adaptation for ADVA FSP 3000 switch 0 23
HAL adaptation for DOCSIS Access Network« 0 it it it i e 24
HAL adaptation for GEPON Access Network . .« o . 26
Implementation of the Logical Switch Instances management within the HAL architecture. 29

List of Tables

Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7
Table A.8
Table A.9

Virtualization Agent implementation within the xDPd’'scode 37
Abstract Forwarding APl implementation within the ROFLproject 40
Hardware Pipeline APl implementation within the ROFL project 43
Interfaces for Plug-in Manager e e e 44
Header files defining Slicer functions e 44
Header files defining access functions for virtualization agent database 45
List of xDPD code files modified to enable virtualization agent functions 45
A set of C header files containing AFA APl function declarations 45
A set of C header files containing HPA function declarations 46

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

Excecutive Summary

This document reports on the implementation details of the ALIEN Hardware Abstraction Layer (HAL) based on the design
specifications detailed in deliverable D2.2.

The main objective of HAL is to realize OpenFlow capabilities on network elements that do not have native support
for OpenFlow and enable their integration in an OpenFlow deployment, such as an SDN experimental facility. In order to
achieve this goal, the HAL architecture decouples the hardware-specific control and management logic, which is handled
in its Hardware Specific Layer, from the network node-abstraction logic which is implemented through the Cross-Hardware
Platform Layer. This decoupling fosters reusability for different HAL components making them readily applicable to a range of
hardware platforms as this deliverable documents. In effect, this document demonstrates the feasibility of the purposed HAL
architecture by describing the implementation-level details of the aforementioned HAL sublayers for the targeted hardware
platforms which include programmable network processors, general purpose packet processors, optical switches, as well as
point to multi-point devices.

The document briefly reviews the HAL architecture and its component layers, i.e., Cross-Hardware Platform Layer (CHPL)
and Hardware-Specific Layer (HSL). We then proceed to provide a precise mapping between the HAL specification (detailed
in deliverable D2.2) and its implementation, pointing out in particular how the software developed in ALIEN contributes to
the overall implementation of the functional architecture of HAL.

With respect to the implementation of CHPL, ALIEN has taken advantage of the Revised OpenFlow Library (ROFL) which
provides a foundation for the development of OpenFlow controllers and datapath elements, and the eXtensible DataPath
daemon (xDPd) which allows the development of platform-specific forwarding modules for a variety of devices. xDPD sup-
ports extensions through plug-in modules. Examples of plug-in modules in ALIEN include the virtualization agent, which
adds slicing functionality, and NETCONF support for the HAL configuration management interface. CHPL communicates
with HSL through a set APIs the implementation details of which are also presented in this document.

The implementation of HSL is, of course, hardware platform dependent. The document explains the process of HSL
implementation for the four identified target groups of hardware platforms, namely X86-based packet processing devices,
programmable network processors, lightpath devices, and point-to-multipoint devices. In particular, this deliverable reports
and illustrates HSL implementation for EZchip NP-3, Cavium Octeon, NetFPGA, ROADM, GEPON and DOCSIS.

Moreover, the document describes how the resource reservation and virtualization mechanisms are implemented in
the HAL. Specifically, the HAL virtualization agent implements an OpenFlow-version agnostic slicing mechanism which aims
to avoid single points of failure with respect to virtualization as well as to support newer versions of the OpenFlow proto-
col. Finally, this document explains the implementation of resource reservation and control in optical devices which have
different forwarding abstractions than the classic OpenFlow datapath.

This deliverable is public. We hope that it will attract the interest of the wider SDN R&D community working on Open-
Flow network implementation.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 7
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

1 Introduction

OpenFlow is considered the leading control plane standard for Software-Defined Networking (SDN) and has already played
a significant role in reshaping network infrastructures. However numerous provider domains are still not equipped with a
proper framework that can facilitate the deployment of an OpenFlow-based control plane on legacy network elements. In
addition, considering the multitude of network devices and platforms to be supported, some vendors have taken a more
cautious approach, thereby indicating a degree of hesitation to add OpenFlow functionality on their own (legacy) equipment.
Such issues hinder the migration of today’s networks to future SDN-enabled networks. The ALIEN Hardware Abstraction
Layer (HAL) is designed specifically addresses these issues. HAL introduces a feasible approach for describing network device
capabilities and controlling the forwarding behavior of all OpenFlow and non-OpenFlow capable hardware throughout a
network. HAL hides the hardware complexity as well as technology and vendor-specific features, thus presenting a unified
abstraction layer to an OpenFlow controller.

Next we provide a brief overview of HAL and its main components, which has been specified in detail in deliverable
D2.2 [7] and publications [9], [10].

1.1 HAL Architecture Overview

The main purpose of HAL is to make a legacy network device OpenFlow-compatible through a set of abstractions. This
approach allows operators, on the one hand, to extend their OpenFlow-based control plane to legacy (but valuable) infras-
tructure and, on the other hand, to network modern OpenFlow switches with non-OpenFlow capable devices in a seamless
manner.

Considering the large array of devices that can be supported by HAL, the architecture has been based on a modular de-
sign which is extensible and compatible with heterogeneous network devices. Moreover by following such a modular design
approach the behavior of any platform can be modified and extended without compromising the overall HAL architecture.
It also makes HAL’s implementation easier and faster for similar network platforms by exploiting module reusability.

A key design choice for HAL is to decouple the hardware-specific control and management logic from the network node
abstraction. This decoupling allows HAL to hide the device complexity as well as the technology- and vendor-specific features
from the control plane logic. Figure 1.1 illustrates the high-level HAL functional architecture where the decoupling has been
achieved through a split into two distinct sub-layers, namely, the Cross-Hardware Platform Layer (CHPL) and the Hardware-
Specific Layer (HSL). The former is responsible for node abstraction, virtualization and communication mechanisms. The
latter takes care of discovering the particular hardware platform and performing all required configuration using hardware-
specific modules. The two sub-layers communicate with each other through one of two interfaces, namely the Abstract
Forwarding APl and the Hardware Pipeline APl depending on the type of the network device.

HAL provides two northbound interfaces to enable the communication between OpenFlow controller(s) and the de-
vices, and to configure the Virtualization Agent via a Network Management System (NMS). The entities represented by
"Network Control" and "Network Management" in Figure 1.1 employ the two northbound interfaces.

1.1.1 Cross-Hardware Platform Layer

The Cross-Hardware Platform Layer (CHPL), illustrated in Figure 1.2, is the hardware-agnostic software component which
is common across all network devices supported by HAL. It comprises several independent modules responsible for device
management (e.g., configuration of underlying device with desired parameters), monitoring (e.g., getting notified about
events like status changes of ports on device), and control. The OpenFlow Endpoint in CHPL encapsulates all necessary
control plane functionalities, maintains the connections with the OpenFlow controller(s), and manages the forwarding state
all the way to the platform drivers.

On the management plane, CHPL presents a unified abstraction of the physical platform (physical ports, virtual ports,
tunnels, etc.) to plugin modules hosted by a plug-in manager. This enables various plug-in modules to perform a variety
of management-related operations, such as configuration. Examples of plugin modules include a NETCONF or OF-CONFIG

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 8
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

Cross-Hardware Platform Layer

OpenFlow Virtualization

[Network Device(s) J

Figure 1.1: High level functional architecture of HAL

agent, a file-based configuration reader, and a Virtualization Agent (VA). The VA, as the name implies, adds resource virtual-
ization features to the platform like a FlowVisor, such as, for instance slicing the device to be shared among multiple users.
The main VA objective is to allow multiple users with simultaneous access to the same physical substrate without interfer-
ence. VA interacts with the OpenFlow endpoint to perform flowspace slicing operations. It applies the slicing policies to the
OpenFlow messages sent by the controller to the switch in a protocol-version agnostic way.

OpenFlow
Protocol

Cross-Hardware Platform Layer

Other Plugins
(e.g. NETCONF,
OFConfig)

Virtualization
Agent (VA)

OpenFlow
Endpoint

Figure 1.2: High-level schematic of Cross-Hardware Platform Layer

The OpenFlow Pipeline is an optional software component of CHPL that may be employed to implement the OpenFlow
table(s) in the sub-layer as illustrated in Figure 1.3. It can also be noticed in this figure that the OpenFlow Endpoint and the
OpenFlow Pipeline use the Abstract Forwarding APl (AFA) for their communication. The same APl is also used by OpenFlow
Endpoint to communicate with the Hardware Specific Layer where it provides interfaces for management, configuration and
receiving event notifications.

1.1.2 Hardware Specific Layer

The Hardware Specific Layer (HSL) addresses the diversity of network platforms and their communication protocols. Through
HSL we can overcome the complexity of implementing the OpenFlow protocol on different hardware platforms. In the real

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 9
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

OpenFlow Protocol

Cross-Hardware
Platform Layer

y— OpenFlow Endpoint

>
M
>
s
OpenFlow
Pipeline
=
>
3
T
N | | | 1 I
= | |Packet iPacket 1 Packet iPacket ,) Packet
- : |referenCE:Modifications:Modifications:Modifications: 1destination

Figure 1.3: OpenFlow entities and interfaces within the Cross-Hardware Platform Layer

world, every network element or platform comes with its own protocol or API for communicating, controlling and managing
the underlying system. Such APIs are often proprietary and closed to the research community. In HAL, HSL is responsible for
hiding the complexity and heterogeneity of the underlying hardware control for message handling and providing a unified
and feature rich interface in its northbound for the upper layer, i.e., the Cross-Hardware Platform Layer. In practice, HSL
must deal with different implementations for each hardware platform. This layer has three key modules:

1. Discovery — Collects the information required to initialize CHPL, e.g., a list of devices working together as a single
hardware platform instance and controlled by a single OpenFlow agent instance, available network ports and their
characteristics such as, for example, transmission technology, transmission speed etc.

1. Orchestration — Sends configuration and control commands to all hardware components of the device that must be
engaged in request handling. Orchestration also handles errors such as configuration failures.

1. Translation —Translates data and action models used in CHPL (mostly OpenFlow-based) to the device-specific proto-
col syntax and semantics, and vice versa.

HSL supports the Hardware Pipeline API (HPA) to interface with CHPL which can be employed, for example, to reuse the
CHPL OpenFlow pipeline implementation. This facilitates, for instance, the implementation of the HAL hardware driver for
programmable network platforms.

HAL has been implemented and is in active use over a variety of programmable and closed-box hardware as illustrated
in Figure 1.4. The Figure also indicates the demarcation points for AFA and HPA. In the following section, a detailed account
of HAL implementation particulars for various types of hardware platforms is provided.

1.2 Software Development in ALIEN

We conclude this short overview of the ALIEN with a few pointers to online repositories for software that was developed in
ALIEN and relates to this report.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 10
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

OpenFlow Protocol

HAL based on ROFL/xDPd
OpenFlow Endpoint Cross-Hardware

Abstract Forwarding API Platform Layer

OpenFlow Pipeline

Hardware Pipeline API
Programmable Platforms Closed-box Platforms

! e) o b P S b '
Driver Driver Driver

- . .
-
K <

Net Dell Split ATCA with DOCSIS ADVA GEPON
DWDM

EZappliance
NP-3 FPGA Data Octeon

Figure 1.4: HAL implementation over different hardware platforms

Most of the implementation work described in this document has been made available publicly in the form of open
source software packages available to the research community. For example, the list of software provided under the Mozilla

Public License 2.0 includes:

1. ROFL, the Revised OpenFlow Library, which is a set of libraries for building multi-version OpenFlow Controllers and
Datapath elements. Information and software repository for ROLF can be found at http://www.roflibs.org.

2. xDPd, the eXtensible DataPath daemon, a framework built on ROFL for developing OpenFlow/SDN datapath ele-
ments and designed to be easily extended with the support of new forwarding devices and platforms, new Open-
Flow versions and extensions. Further information as well as the software repository for xDPD is available at http:

//www.xdpd.org.

3. The xDPd-Virtualization plugin is a module that adds virtualization capabilities to xDPd. The github repository for
this module is available at https://github.com/fp7-alien/xDPd-Virtualization.

4. xCPd, the eXtensible Control Path daemon, a framework that allows interception of OpenFlow control messages
to allow access networks to masquerade as distributed switches using tagging. Source code available at https:

//github.com/richardclegg/xcpd

1.3 Deliverable Outline

The remainder of this deliverable is organized as follows. Section 2 presents CHPL, starting with a brief summary of the
ROFL and xDPd implementations. Next, we summarize the implementation of slicer implemented in ALIEN as an xDPd
plugin followed by a presentation of the HAL APIs. Section 3 presents implementation details for HSL on four categories
of devices, namely, (a) X86-based packet processing devices, (b) programmable network processors, (c) lightpath devices,
and (d) point to multi-point devices. Section 4 presents implementation details about the reservation and virtualization of
resources for ALIEN devices. Finally, Section 5 summarizes and concludes the deliverable.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 11
Date of Issue: 12/06/2014

http://www.roflibs.org
http://www.xdpd.org
http://www.xdpd.org
https://github.com/fp7-alien/xDPd-Virtualization
https://github.com/richardclegg/xcpd
https://github.com/richardclegg/xcpd

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

2 Cross-Hardware Platform Layer Implementation

As mentioned earlier, the Cross-Hardware Platform Layer (CHPL) is the hardware-agnostic software component which is
common across all network devices supported by HAL. In this section we detail the CHPL implementation starting the foun-
dation elements and concluding with the CHPL application programming interfaces (APls).

2.1 ROFL

The Revised OpenFlow Library [3] can be used to build OpenFlow control applications, controller frameworks, and data path
elements. In short, ROFL provides a tool box to build OpenFlow-enabled software. Two of the most valuable tools in ROFL
are the OpenFlow Endpoints and the OpenFlow Pipeline described next.

2.1.1 OpenFlow Endpoints

ROFL OpenFlow Endpoints provide basic support for the OpenFlow protocol, which includes protocol parsers, message man-
gling, and so on. In addition, they map the OpenFlow protocol wire representation to a set of C++ classes. Each OpenFlow
Endpoint can be used on the data or on the control plane. That is, a ROFL OpenFlow Endpoint can be incorporated either in
a datapath element or in an OpenFlow controller. Respectively, the endpoint can handle the OpenFlow control connection
to any controller or datapath element.

In practice, an OpenFlow Endpoint hides the details of the respective protocol version and provides a clean and easy-
to-use API to software developers. Currently, ROFL supports three types of Endpoints, namely for OpenFlow 1.0, OpenFlow
1.2, and OpenFlow 1.3.

2.1.2 OpenFlow Pipeline

ROFL has been enhanced during the ALIEN project with building blocks for creating datapath elements, most notably an
OpenFlow pipeline, that can be integrated into any hardware platform supporting ANSI C. The OpenFlow pipeline can be
used in different ways:

¢ as a data model of the forwarding plane of an OpenFlow switch

¢ as a data model and state manager library to maintain the state of the installed flowMod and groupMods entries,
associated timers, statistics, and so on. This allows us to let the platform-specific code capture events (e.g. flow_mod
insertion, flow_mod removal), APIs to mangle ASIC or other device configuration

¢ as adata model, state manager, and a software OpenFlow packet processing library, using packet processing APIs to
process packets in software or hybrid (i.e. hardware-cum-software) OpenFlow datapath elements.

Furthermore, the ROFL OpenFlow Pipeline supports multiple logical switches on a single OpenFlow switch instance,
each running its own OpenFlow version (e.g. OpenFlow 1.0, 1.2 or 1.3). In the case of software switches, in particular,
specific matching algorithms (e.g. flowMod look-up) can be defined on a per table and per logical switch basis, such as, for
instance, L3 optimized matching.

2.2 xDPd

xDPd has been further enhanced during the ALIEN project duration as a user-space implementation of an OpenFlow datapath
element. It currently supports OpenFlow 1.0, 1.2, and 1.3 [8] and it is designed to run on multiple hardware platforms.
Arguably, xDPd has a somewhat cleaner software architecture than the OpenFlow Virtual switch (OVS). xDPd implements an
internal interface, namely the Abstract Forwarding API (AFA). In xDPd nomenclature, AFA is the APl between the hardware-
independent Control and Management Module (CMM) and the hardware-dependent Platform Driver (see Figure 2.1).
With respect to implementation and operational experience, xDPd is available on several hardware platforms, includ-
ing: User-space GNU/Linux (x86-gnu-linux), GNU/Linux Intel DPDK (x86-dpdk), Cavium Octeon, Broadcom, EazyChip (EZchip

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 12
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

AL EN

t
1 Platform (hw) agnostic
|
|
| Re-usedacross all platforms
v

Abstract Forwarding API

Modul T Platform specific

F |

l its implementation

Figure 2.1: xDPd general architecture

NP-3), and NetFPGA-10G; an up-to-date list is available online as well at http://xdpd.org/#platforms. Source code
availability for each of these platforms may be subject to hardware vendor license and, as such, not all of platform drivers
can be open-sourced by the ALIEN partners.

As mentioned earlier, OpenFlow pipeline implementation for different hardware platforms is greatly facilitated by the
availability of ROFL. One of the features of xDPd is the creation of multiple Logical Switch Instances (LSIs). LSIs are created
either through a configuration file which is processed at start up time, or dynamically through a configuration interface.
Each LSl is bound to network interfaces. In the case of multiple LSIs, network interfaces have to be exclusively assigned to
one LSl only. This is a simple way of slicing and a first realization of a virtualization.

2.2.1 Control and Management Module

Conf

file Management and control

plugins, e.g., OFConfig,

_ [OF1.0 J [OF13 J Netconf, OpenFlow endpoints
xDPd native management
APIs (C++)

CMM core functionality

forwarding engine

OFConfig

Figure 2.2: Control and Management Module of xDPd

The Control and Management Module (CMM) is the hardware-independent part of xDPd. CMM consists of a core
module that implements an OpenFlow-like APl in C++, which abstracts over the pure OpenFlow in that it allows LSIs of
multiple protocol versions to run in parallel. In order to do so, CMM needs to bind the proper OpenFlow Endpoint version
to the LSI, perform sanity checks on the flowMods sent, and in general be prepared to handle messages of multiple versions.
As an example, message numbers, protocol fields, and counter formats (32-bit to 64-bit) differ between versions, so there
needs to be a proper translation where possible, and marking of messages where necessary.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 13
Date of Issue: 12/06/2014

http://xdpd.org/#platforms

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

2.2.2 Plug-in Manager

The xDPd configuration and management interfaces are exposed through the Plug-in Manager. As a result, xDPd can be
extended to provide further interfaces to configuration and management entities. Table A.4 summarizes the interfaces
implemented by each plug-in.

2.2.3 Slicer

Slicing functionalities within xDPd are provided with a set of methods that form the so-called Virtualization Agent (VA). The
main objective of the Virtualization Agent is to enable multiple controllers (which are likely to correspond to different exper-
imenters/tenants) to control the same physical substrate, which is composed of xDPd-enabled switches, without interfering
with each other. In its current implementation, the flowspace slicing mechanism is OpenFlow protocol version agnostic
and, in principle, works with every field of the packet’s header.

Below we summarize the most important operations that are performed by the Virtualization Agent:

e The VA checks the header of the packets against the slice configurations and configures the destination controller
for the OpenFlow Endpoints.

¢ The VAintersects the matches of the flowMod messages coming from the controllers with the corresponding flows-
pace definition. In the current implementation, the VA sets the VLAN_ID to the value assigned to the slice.

e The VA checks if the actions contained in the flowMod and packetOut messages violate the slice’s definition (e.g.
sending packets out to a port that is not part of the slice).

e The VA checks if the actions contained in the buckets of the groupMod messages violate the slice’s definition (e.g.
sending packets out to a port that is not part of the slice).

Figure 2.3 illustrates the implementation of the VA within the HAL architecture. In particular, one instance of the
VA is created during the device start-up and is responsible for the correct flowspace slicing. The VA does not inspect the
OpenFlow protocol but leverages on the protocol-agnostic xDPd's internal structures to both select the correct controller
for switch-to-controller messages and to filter out the controller-to-switch messages that violate the slice definitions.

The slicing process is performed within the OpenFlow Endpoints by calling the methods exposed by the VA. These are
the labels MESSAGE ANALYSIS FILTER and SELECT SLICE in Figure 2.3. The process does not involve OpenFlow messages, but
operates on protocol-agnostic structures such as of1x_action_group_t and of1x_flow_entry_t; see also Table A.1. However,
the "new flow" messages are analyzed outside the endpoints. In particular, this type of processing occurs in the xDPd Control
and Management Module, implemented in xdpd/cmm.cc, in order to avoid the OpenFlow protocol inspection (see SELECT
CONTROLLER label in Figure 2.3).

The aforementioned functions are implemented within the xDPd code tree and are defined in the header files listed in
Table A.5. The files that are added in the configuration plugin for reading and updating the Virtualization Agent database
are listed in Table A.6. Moreover, the xDPd code files that have been enhanced during the ALIEN project duration in order
to implement the VA functions can be found in Table A.7.

Finally, Table A.1 reports the most relevant functions used to implement the Virtualization Agent.

2.3 APIs

The HAL architecture is comprised of four main layers, (1) the Control and Management Layer, (2) the Cross-Hardware
Platform Layer (CHPL), (3) the Hardware Specfic Layer (HSL), and (4) the forwarding / network devices layer. These layers
communicate with one another using a set of well-defined interfaces. In this section, the different interfaces of the HAL
architecture (i.e., NETCONF, AF API, and the Hardware Pipeline API) are described.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 14
Date of Issue: 12/06/2014

D2.3 Report on

2.3.1 NE

Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

OpenFlow

+ flowspace scope
Protocol pace_scop

* slice scope

Cross-Hardware Platform Layer

Other Plugins
(e.g. NETCONF,
OFConfig)

Virtualization
Agent (VA)

OpenFlow
Endpoint

MESSAGE

SELECT
ANALYSIS VIRTUALIZATION AGENT
FILTER SLICE + is active SELECT
* add slice CONTROLLER

* add_flowspace

* add switch |
* check slice existence

* flow entry analysis

* action_analysis

* group mod analysis

m

FLOWSPACE
* flowspace

*+ compare_match

Figure 2.3: The Virtualization Agent implementation within the HAL architecture.

TCONF

VA CONFIGURATION

* wvirtual _agent_ scope

VA_SWITCH SLICE
* check match * has port

AL EN

In the OpenFlow protocol specification(s), several configuration and management requirements are included either explicitly

or implicitly

as describedin [OF-CONFIG]. These requirements include:

* connection setup to the controller (e.g., the IP address of the controller, the port number, the transport protocol
used, either TLS or plain TCP)

e support for multiple controllers

e connection interruption handling (i.e., fail-over modes in case one of the controllers malfunctions)

¢ switch and controller certificate configuration for each controller that is configured to use TLS

s queu

* switc

e parameters configuration such as min-rate, max-rate for queue traffic

h port configuration

¢ capability discovery to describe the capabilities of the OpenFlow logical switch, and

¢ configuration of the switch datapath ID.

Using (static) configuration files to configure each device with the above configuration parameters can be cumbersome

and has operational limitations. NETCONF [13] can be employed to automate this process and therefore it is seen as a rea-

sonable alternative to use for managing ALIEN devices at the same time and installing the above configuration parameters.

As such, in order to reduce the complexity of the management tasks, a NETCONF extension/plugin is introduced in the HAL

architecture

implementation, as illustrated in Figure 2.4.

Project:
Deliverable N
Date of Issue:

ALIEN (Grant Agr. No. 317880)
umber: D2.3
12/06/2014

15

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

- list_capabilities <=dpid>=

- list_ports <dpid~

-diszble_port<dpid, portio>
OpenFlow MNETCOME Client - list_logical_dztpaths<dpid=

Cross-Hardware Platform Layer

OpenFl
end-point Server

Translation Orchestration

[MNetwork Device(s)]

Figure 2.4: NETCONF plugin within the HAL architecture

The main purpose of the NETCONF plugin is to provide ALIEN island administrators and users with a management
interface to configure the underlying ALIEN devices with several parameters, such as the OpenFlow controller IP address
and switch datapath IDs. For administrators to have management access over network devices, they should be provided
with a list of management commands that they can use to configure the underlying devices. For instance, administrators
can use a command line interface (CLI) to list the commands that are available. Taking the the OpenFlow management and
configuration requirements mentioned above as a baseline, the following commands could be included:

e list_capabilities <dpid>
e list_ports <dpid>
e disable_port <dpid, portNo>

o list_logical_datpaths <dpid>

2.3.2 Abstract Forwarding API

The Abstract Forwarding API (AFA) provides all the interfaces for management, configuration and events notification of the
Hardware Specific Layer instance for the associated hardware platform. The management and configuration parts of the
AFA interface must be implemented by a hardware driver and called by the Cross-Hardware Platform Layer instance (see
Figure 2.5). The Notification part is provided by Cross-Hardware Platform Layer instance and invoked by a hardware driver.

AFA is implemented within ROFL as a set of C header files containing AFA API function declarations as listed in Table
A.8. Functions declared in these files must be used by hardware driver subproject created within the xDPd implementa-
tion. Table A.2 contains a list of AFA abstract methods declared in the HAL specification [7] and corresponding function(s)
implementations in ROFL. Table A.2 also updates information from the HSL specifications document [6] containing the first
version of HAL AFA implementation required for HSL specification and development. More information about AFA functions
and required parameters could be found in [7] and in the ROFL source code repository.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 16
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

Cross-Hardware Platform Layer

OpenFlow Virtualization
AFA AFA AFA Implemented by ROFL library:
Management Configuration Notification rofl-core\src\rofi\datapath\hal

Hardware driver provided as
Translation Orchestration Discovery subproject in:
xdpd\src\xdpd\drivers

[Network Device(s)]

Figure 2.5: Abstract Forwarding APl within HAL architecture and implementation details

2.3.3 Hardware Pipeline API

Hardware Pipeline API (HPA) is a low-level interface providing access to network packet operations, memory management,
mutex and counter operations which are realized in different ways on different programmable platforms (see Figure 2.6).
The main benefit of using the HPA interface is that the hardware driver does not need to implement the OpenFlow Pipeline
per se. Rather the hardware driver can reuse the CHPL OpenFlow Pipeline implementation presented earlier in this sec-
tion. This approach reduces significantly the overall development effort required to implement the HAL hardware driver on
programmable network platforms such as Cavium Octeon, Broadcom Triumph2, Intel DPKK, and EZchip NPS processors.

Cross-Hardware Platform Layer

Notification
Lock & Counter
Packet Memory Atomic
Operations Management Operations

Figure 2.6: Hardware Pipeline API subsets and invocation model

HPA is implemented using ROFL as a set of C header files. The HPA function declarations are listed in Table A.9. More-
over, the list of HPA abstract methods introduced in the HAL specification [7] and corresponding function(s) implementations
in ROFL can be found in Table A.2.

Table A.3 updates the information found in the earlier published HSL specification document [6], which presented the
first version of HAL Pipeline implementation required for HSL specification and development. More information about HPA
functions details and required parameters could be found in [7] and in the ROFL source code repository.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 17
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

3 Hardware-Specific Layer Implementation

In this section, the HAL Hardware-Specific Layer is presented for four groups of network devices:

o X86-based packet processing devices -- This group comprises general purpose network devices that perform packet
handling in software. This includes computing platforms from server boards to mini PCs like Raspberry Pi, Arduino,
and so on, which typically have at least two or more independent network interfaces to turn them into potential
forwarding nodes.

¢ Programmable network processors -- This group refers to network devices which allow their data plane to be pro-
grammed to perform packet processing. For some network processors (e.g.: EZchip NP-3, Cavium Octeon, NetFPGA),
it is possible to implement the OpenFlow Pipeline directly into hardware.

¢ Lightpath devices -- Since the OpenFlow protocol is limited to an Ethernet-like abstraction, in the case of optical de-
vices, such as reconfigurable optical add-drop multiplexer (ROADM) systems, the abstraction layer must be adapted
to meet the OpenFlow extension requirements for supporting circuit-switched networking.

¢ Point to multi-point access networks -- For devices such as those based on standards like Gigabit Passive Optical
Network (GEPON) and Data Over Cable Service Interface Specification (DOCSIS), with deployments based on "head"
and "tails" topologies, some kind of orchestration is necessary for exposing several devices as a single OpenFlow-
enabled "device" through HAL.

Each of these four groups group has different constraints and imposes various implementation challenges which have
been explained in detail in earlier deliverables [5] and [6]. As a reminder, deliverable [5] has distinguished five types of net-
work hardware themes, which are used in this section in order to present HAL architecture implementations for these types
of hardware platforms. The Physically Reconfigurable Systems theme has no impact on HAL design and its implementation
thus is not presented in this section.

3.1 Packet Switching Devices

This subsection discusses two types of packet switching devices that have been considered in ALIEN, namely network devices
based on the Intel x86 architecture and devices employing programmable network processors.

3.1.1 X86-based Packet Processing Devices

SDN has been earlier associated with datapath forwarding using software switches typically running some Linux OS on a
commodity server or PC. In general, this sort of hardware features a small number of network interface cards (NICs) that
are attached via the PCl bus to the south bridge on a server mainboard. As most of these servers during the last decade
incorporated Intel or AMD (x86) CPUs, the implementation of packet forwarding became essential for this architecture. As
the frequency of an individual CPU core reached a limit of approximately 3.7 GHz, some years ago the x86 architecture moved
to multi-core CPUs based on replications of older core layouts on a smaller chip surface, benefiting from the tic-toc of large
CPU manufacturers (shrinking the masks before moving to a new architecture). At the same time, the PCl bus speed and
the south bridge itself became increasingly more of a bottleneck for fast packet forwarding. Recent architectures therefore
connect directly PCl lanes to certain CPU cores. This is complemented by the Intel's DPDK, the Data Plane Development
Kit. This software development kit replaces Linux kernel drivers for Ethernet cards with libraries that allow direct memory
access to the ring buffers on the NIC.

Recently, a number of software switch implementations added DPDK support (i.e. Open vSwitch, xDPd) and reported
significant speed-up of forwarding rates to reach line rates of 10 Gbit/s on low-cost CPU equipment like the Intel Atom
platform.

The drawback of DPDK, however, is that it works practically only on Intel CPUs and NICs, limiting its applicability. Netmap
[15] increases the number of supported network interface cards while practically allowing the same memory access without
the duplicated copy from the NIC to kernel space and then again to user space.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 18
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

MMAP (memory map) is the general version that circumvents one copy operation between the kernel and user space
by allowing direct access from user space processes to the Rx/Tx ring buffers. The measured speed difference between the
DPDK and MMAP versions for xDPd during a recent comparison resulted in a factor of more than 5. Detailed documentation
of these results will be included in the forthcoming deliverable D5.3.

3.1.2 Programmable Network Processors

Programmable Network Platforms represent a set of network equipment containing a re-programmable hardware unit (NPU
or FPGA) that can be adapted to a wide range of network processing tasks (i.e. packet switching, routing, network moni-
toring, firewall protection, deep packet inspection, load balancing, etc.). These platforms allow for expressing packet pro-
cessing control/service logic, using a programming language, in form of compiled source code which can be implemented
indefinitely on a single hardware unit.

Programmable processors are ideal hardware platforms for introducing and validating new networking concepts. To take
advantage of this possibility, in the ALIEN project, dynamic adaptation of network node capabilities has been investigated
in order to introduce new protocols to a datapath element with new processing actions which later could be added to the
OpenFlow protocol action set.

Currently, there are many programmable network platforms available in the market produced by several vendors such
as EZchip, Marvell, Cavium, Broadcom, Freescale, PMC-Sierra, and Tilera. Each vendor provides programmable processors
using quite different processor architectures in terms of microcore types (i.e., general core like in CPU, task optimized core);
organization (e.g., homogenous cores loosely assigned to tasks, strict pipelines of heterogeneous cores); add-ons (i.e., hard-
ware accelerators for parsing, pattern matching, cryptography, packet classification, querying, among others); and memory
accessibility (e.g., standard CPU cores with ASIC network enhancements, task optimized NPU cores). This heterogeneity of
network processors is a challenge when establishing common implementation assumptions based on the HAL specification
design.

EZappliance Platform

The heart of the EZappliance platform [1] is the EZchip NP-3 network processor (see Figure 3.1), a fully programmable chip
which enables flexible parsing, classification, packet header manipulation and switching of pass through packets. It is the
part of the implementation stack where packet processing through the OpenFlow Pipeline should occur in order to take
advantage of the full performance of processor. Unfortunately, the CHPL pipeline for handling packet abstractions cannot
be reused as-is in this platform because the NP-3 processor has very strict time constrains for packet processing and cannot
store the packets anywhere inside the platform. For this reason, a new implementation of the OpenFlow Pipeline for NP-3
task-optimized cores was developed from scratch using the EZchip assembly language.

The NP-3 processor is accompanied with a standard CPU foreseen for the deployment of control and management plane
functionalities. The standard CPU was used to deploy both CHPL and HSL. Since the CHPL pipeline is not used, HSL could be
controlled by CHPL through the AFA interface only.

The HSL for EZappliance devices supports discovery and translator functionalities. The discovery functionality is based
on automatic retrieval of information about all data plane ports, along with the corresponding attributes and status. In
the case of EZappliance, which is a standalone device, topology discovery is not required (for the same reason, HSL for
EZappliance does not include the orchestrator functionality).

The most complex part of HSL is the implementation of translation functionality which transforms OpenFlow-based AFA
messages into memory structures located within the NP-3 network processor. The NP-3 memory structures are accessed via
the EZdriver provided by EZchip. The semantics used for the EZappliance memory structures is quite similar to OpenFlow,
i.e., the memory contains a structure with flow entries but the syntax is mostly different: proprietary binary encoding of
packet matching and actions. Translation in the HSL is stateless.

NetFPGA Cards
Similarly to NP-3, NetFPGA cards [2] can be treated as programmable packet processors. They have four 1 Gb/s Ethernet
interfaces (or 10Gb/s in a newer versions). Both card versions can work as separate network nodes, however, typically they

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 19
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

EZappliance plaftorm

CPU (Linux OS) OpenFlow protocol | Etho

Cross-Hardware Platform Layer

AFA interface

Hardware = 1.;ngjation Software

Specific pipeline

Layer | Discovery | | (optional)
 CorbalIPC

[)

| 12d

Memory structures

OpenFlow pipeline

EZchip Task Optimalized Cores

Figure 3.1: HAL adaptation for EZappliance network processor platform

are mounted to a PC and they are integrated with the operational system via PCl or PCle bus. The program, which is running
in the FPGA chip, has to be prepared in Verilog or VHDL. Due to the specific architecture and technology, its performance is
very high and it is widely used by designers of different prototypes.

In ALIEN NetFPGA cards are used as a hardware platform. The OpenFlow Pipeline is almost fully implemented in the
NetFPGA logic which offers much better performance characteristics compared to using the CHPL pipeline that has to be
deployed in the PC operating system as part of HSL. In the NetFGPA HAL realization (see Figure 3.2), the CHPL pipeline is
used as a full featured OpenFlow albeit slower implementation which processes only the packets that cannot be handled
by the hardware pipeline due to OpenFlow missing features in the current hardware pipeline implementation.

The CHPL for NetFPGA cards is placed in the PC operating system and has a connection with the network controller
using the OpenFlow protocol via the NIC of PC. The HSL for NetFPGA also realizes discovery and translation functions. The
translation functionality is responsible for recoding of OpenFlow flow entries into a binary representation recognized by the
hardware OpenFlow pipeline in the NetFGPA card.

Proper control information (flowMods) are stored in the hardware chip of the NetFPGA card and all possible flow ac-
tions (packet forwarding, dropping, etc.) are realized by the hardware chip. It is only the first few packets per each flow (or
flows) which cannot be served by the hardware pipeline that are handled in the software realization of HSL.

Cavium Octeon
The Cavium OCTEON family offers a variety of Multi-Core MIPS64 processor boards especially targeted for network process-
ing duties. With 1 to 48 cnMIPS cores on a single chip, depending on the model, and other hardware acceleration units
(port 1/0, cryptography, DFA, etc.), they are a highly versatile software programmable network platform.

The architecture of the implementation is as follows:

e There is a single MIPS core, called the management core, running a standard CAVIUM Linux OS. The management

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 20
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

PC+NetFGPA plaftorm

CPU (Linux 03) OpenFlow protocol | Etho |

Cross-Hardware Platform Layer

AFA interface

Hardware Translation Software
Specific e pipeline
Layer | Discovery \L(optional)J
& CorbalPC
3

Flow tables

OpenFlow pipeline

Xilinx Virtex2-Pro logic gates

Figure 3.2: HAL adaptation for NetFPGA cards

core is employed to run xDPd (CMM, HSL) and the specific OCTEON driver

e There is shared memory, allocated at boot time in the so-called bootmem area shared across the management core
and the rest of the 1/O cores.

¢ Finally, the N-1 remaining cores are devoted to process packets. They run on bare-metal, that is, that is, in standalone
mode (Single Executive Standalone, SE-S) in OCTEON's terminology, which means that they run a specific compiled
binary program in single-thread mode, without any kind of operating system or thread context swapping whatsoever.

The management core is in charge of dealing with the particular configuration of the fast path rules, so the OpenFlow
pipeline, while the remaining cores use this state to process packets continuously (See Figure 3.3). Actual packet flow is
going through the SE-S cores exclusively, except in the case when there is no match in the FlowTable.

The interaction of the controller with the device is taking place via OpenFlow. The OpenFlow Endpoint is the one
implemented as part of ROFL in the CMM. Inside the OCTEON processor itself, another API is used to access the specific
functions and registers of hardware accelerators. This API is called Simple Executive APl (SE-API) or HAL in the OCTEON
Users’ Manual (not to be confused with the ALIEN-specified HAL). The Linux core implements a pipeline that is a logical
representation of the SE-S cores, and no packet actually passes through this one, except Packet-outs for convenience.

3.2 Lightpath Devices

OpenFlow, as a control protocol, promotes the use of flows instead of packets as the most vital unit of control alongside
the separation between control and data planes. The optical domain, however, has long followed this approach since there
is a clear separation of the control from the data plane. In addition, the notion of packets does not even exist in this
domain. Instead, a lightpath, which can be considered as a flow, is the fundamental unit of information when establishing
a connection from one optical node to another. However, OpenFlow focuses mostly on packet switching and, originally

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 21
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

A OpenFlow protocol

Cavium Octeon Platform

Linux core v

OpenFlow Endpoint

tAFA interface

OpenFlow Pipeline

a

h J
«0 PACKET_IN_BUF | _
_ Write FlowMods &
| flowtable mapped " Read stats, Packetln
ﬁ into bootmem
4
r24 1
Z]
e ‘ _Read FlowMods &
Standalone core(s) " Write stats, Packetin
T o 5
=

Figure 3.3: Relation between Linux core and SE-S cores in the OCTEON Plus implementation

did not offer any support for circuit switches, though this has been addressed to some degree later through a number of
extensions proposed [4].

Lightpath devices are used mainly, but not limited to, in the core of the network to provide high-speed links between
transit nodes of the network: Optical switch devices offer a number of benefits to the operators such as scalability (since
and they can switch large amounts of data with very low latency) and energy efficiency (compared to the power consumed
by an electronic switch device). The emerging convergence of optical packet domains fostered by OpenFlow can enable
operators to satisfy the growing demands for reduced latency and large amount of bandwidth from the current and evolving
applications (e.g. 4K streaming, video on demand, etc.).

The ADVA FSP 3000 is a high-performance Wavelength-Division Multiplexing (WDM) networking system for bidirectional
transmission of optical signals. The system uses a modular structure which enables a flexible upgrade of capacity and
functionality according to network requirements. The transmission between the modules is optical and passive, which
means that the device control is completely separated from the data plane.

As opposed to a packet switch, an OpenFlow-enabled circuit switch consists of a cross-connect table and an OpenFlow
channel to the controller. The cross-connect table maintains a list of entries with all connections between the ports inside
the switch. The OpenFlow Endpoint is handled using the ROFL library, which has been enhanced to support the optical
extensions to the protocol. the OpenFlow Pipeline functionality is not supported by lightpath devices since there is no
notion of packets in the optical domain and no packets can be buffered or forwarded to the controller.

As illustrated in Figure 3.4, in order to get the OpenFlow abstraction of the device the Simple Network Management
Protocol (SNMP) management interface is used. However, this interface first needs to be configured manually with a valid
IP address to enable remote access. SNMP communication (traps, get/set messages) provides all the information that can
be extracted from the network element, while the layer above is responsible for receiving and translating from this pool
of resources the those that are required for the OpenFlow abstraction (OpenFlow Resources). The layers described above
compose the HSL of the ADVA network elements. On top of that the functionality and the facilities supplied by ROFL are

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 22
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

employed to maintain the OpenFlow channel and handling messages received from the extended OpenFlow controller.

Layer0 optical switch

=

CPU (Linux OS) ¢ Extended OpenFlow Protocol eth1 |~

araw 1o

(ROFL library)

crofbase methods

OF Resources
Hardware

Specific | Glue logic |
Layer

L SNMP model J |

ethl (g
SNMP protocol
v

‘ Management interface ‘

UNIX socketT

‘ Node constraints ‘

suod [eanndo

O U U T U
optical ports

‘ Power equalization ‘

Figure 3.4: HAL adaptation for ADVA FSP 3000 switch

3.3 Point-to-MultiPoint Networks

In general, point-to-multipoint devices consist of a "head end" which communicates with several "tail end" devices, usually
through broadcast means with some form of multiplexing which allows the devices to know which traffic is intended for
them. This approach is very common in access technologies. Within the ALIEN project, two types of hardware in this
category are used, namely the Gigabit Ethernet Passive Optical Network (GEPON) and the Data Over Cable Service Interface
Specification (DOCSIS). Descriptions of both devices can be found in [5].

The Access Network (AN) provides the connectivity between the home/business customer's location (i.e. subscribers)
and the operator's premises. This part of the network is known as the last mile and it is considered as the bottleneck in terms
of bandwidth. It is also often the most expensive part of an operator's network. There are several technologies currently
used in commercial deployments depending on the available media, such as xDLS (copper), DOCSIS (cable) or GPON (fiber).
In order to deploy the system in the most cost-effective manner, this media is shared by a set of subscribers. As a result,
bandwidth sharing is one of the goals of any of those AN technologies. Regardless of the specific technology used, all these
systems can be abstracted as a point-to-multipoint (i.e. operator-to-subscribers) device.

One of the main challenges of these systems is that they are so specific in nature (i.e. focus on the Access Network)
and technology that it is hard to integrate their control and management planes in a more generic framework, such as an
application-oriented and multi-access technology solution. In this context, the SDN paradigm and OpenFlow are the tools
that enable this integration by introducing a common abstraction for networking devices, i.e. the ALIEN-specified HAL. This
layer deals with specific interfaces and hides the dependence on the technology. In the end, a HAL-based AN is agnostic
with respect to the actual technology deployed.

In the following subsection, we present an example of this proposal for a DOCSIS system, which exposes OpenFlow as
its northbound interface. By doing this, the whole system can be abstracted as a single OpenFlow device.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 23
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

3.3.1 DOCSIS Access Network

The DOCSIS platform, illustrated in Figure 3.5, comprises three main elements: the CMTS, the cable, and the cable-modems
(CMs). The CMTS is the head-end and 'intelligent' part of the system, which determines the use of the shared media by the
CMs. The CMTS must be configured in the bridge mode (i.e. TLAN or L2VPN) to be compatible with OpenFlow abstractions.
The cable is the shared media (coaxial) between the CMTS and several CMs. Finally, the CMs are the tails of the system
located at the subscriber's location. Collocated with the CMs, it is customary to deploy a managed OpenFlow User Instance
(OUI) to implement some service related networking logic. In order to implement connectivity between any CMs in bridge
mode, an external device (i.e. aggregation switch -AGS-) is needed adjacent to the CMTS.

ALHINP OpenFlow protocol

Cross-Hardware Platform Layer

HAL interface

Hardware Translation][Discovery]
Specific

Layer [Orchestrator

OF OpenFlow OF
endpoint DOCSIS endpoint

Provisioning

) System (DPS) y Customer
o T~ - Premise
ISP Equipment Equipment (CPE)

Figure 3.5: HAL adaptation for DOCSIS Access Network

Since the DOCSIS platform is closed we cannot reprogram the devices, control is only possible through vendor-supported
standard interfaces. In principle, this limits the integration of DOCSIS under an OpenFlow interface. However, by adding
the OUI and aggregation switch in the picture (i.e. as helper boxes), we can orchestrate the whole system to overcome
these limitations and implement a fully compatible solution. As a result, the ALHINP (ALien HAL Integrating Network Proxy)
performs the proper abstraction from the whole system by sitting (in the control plane) between the set of network devices
and the OpenFlow controller. This proxy is based on AFA, since the actual data plane remains outside the DOCSIS proxy.

As previously mentioned, the ALHINP resides on an external box logically located between the platform and the con-
troller and implements both layers of HAL: CHPL and HSL. In this implementation, CHPL consists of the OpenFlow Endpoint

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 24
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

using the AFA as its southbound interface. Therefore, CHPL interacts with the HSL through AFA.

HSL for DOCSIS platform implements the discovery, orchestration and translator functionalities. The discovery compo-
nent provides information each time a new CM is connected to the system. As a consequence, ALHINP dynamically updates
the virtual ports exposed to the controller, since each CM is abstracted as a new virtual port of the virtual OpenFlow switch.
The orchestration component enables the coordination of multiple hardware components (i.e. OUI, CMs, CMTS and AGS)
so they act as a single device.

All control plane interactions between the controller and the proxy must be handled to achieve a similar/emulated re-
sponse from the set of devices. In order to improve the modularity of the system the orchestrator assumes three domains:
OUI, AN and AGS. Each domain implements its own driver to interact with the target device via the available interface.
Moreover, by doing this separation the proxy can be easily developed and the AN technology can be changed just by de-
veloping a new driver for it. Finally, the translation component implements the logic to map the virtual ports (from a single
virtual DataPath Identifier) to real ports and physical DataPath Identifiers, and vice versa. This functionality is implemented
in coordination with the orchestration module and gets input from the discovery module.

ALHINP can be used as an example of how any other AN technology can be abstracted following a similar approach and
be exposed though an OpenFlow interface. By doing so, the AN can be controlled as any other OpenFlow resource, and even
more, any previously developed OpenFlow application can run without any adaptation. As next steps we are investigating
how the management of the shared media (e.g. the bandwidth assigned to each subscriber) can be exposed though the
OpenFlow interface of the proxy. The appropriate extensions are currently under development.

3.3.2 GEPON Access Network

Similarly to DOCSIS, GEPON has three main elements which can be considered analogous: the OLT (Optical Line Terminal),
the splitter and the ONUs (Optical Network Units); see Figure 3.6. OLT is the head end device that is the most intelligent
part of the system and is responsible for orchestrating the ONUs. The ONUs are usually situated in customer premises. Data
transfer between ONUs and OLTs is optical. In a typical deployment, data between ONUs goes via a head-end switch outside
the OLT. The optical part of the network is passive and all data from the OLT goes to all ONUs which share their time using
time division multiplexing.

As with DOCSIS, GEPON is proprietary/closed source equipment. A different approach was taken to that taken by the
DOCSIS implementation although the two approaches are complementary. Instead of having the OUI boxes collocated with
the tail-end equipment, the GEPON HSL works with changes only at the head-end device. The key change is to enhance
the switch outside the OLT to be OpenFlow-enabled and to add a proxy device, known as eXtensible Control Path daemon
(xCPd). xCPd speaks OpenFlow northbound and southbound and pretends to be a large virtual switch with one port for the
OLT and one port for every ONU. XCPd translates these virtual ports to either the appropriate real port and, if appropriate,
a VLAN tag that is associated with the appropriate ONU. Where OpenFlow requirements cannot be met using just VLAN
tags, then xCPd communicates directly with the OLT via its management port. xCPd orchestrates the changes to the OLT
and the translations of matches and actions to the lower-level OpenFlow switch. The downside is that because VLAN tags
are used between the OpenFlow switch and the OLT then those tags cannot be used elsewhere unless the device supports
QinQ (stacked VLAN tags) which the model at UCL does not.

XCPd is a generic framework that could be used to control any access network with the following requirements:

¢ all traffic between tail-end devices goes via a switch upstream from the head-end.
¢ the head-end device can route traffic via tags and untag them.

¢ the head-end device can tag packets from tail end devices.

For some OpenFlow functionality then hardware-specific sections must be written that is particular to the hardware in
question. This is the control path labelled MGMT in Figure 3.6. Porting to new access devices meeting the above require-
ments automatically will achieve the majority of OpenFlow 1.0 functionality. Port statistics will not map correctly without
hardware-specific code being written for the hardware to be ported.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 25
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor AL EN

OpenFlow protocol

External
OFC

Cross-Hardware Platform Layer

HAL interface

Hardware Translation][Discovery]
Specific

Layer ’ ’

oLT
specific
cmds

OF
endpoint

ISP Equipment Customer
Premises
Equipment (CPE)

Figure 3.6: HAL adaptation for GEPON Access Network

4 Resource Reservation and Virtualization

This section summarizes the outcomes of the Task 2.4 development activities focused on Reservation and Virtualization of
Resources.

Resource reservation refers to the characterization of resource types including interfaces, processing units, and the
flowspace. As a result, the extension of the OpenFlow data model is provided to expose such resources through the control
channel.

Resource Virtualization refers to the segmentation of the available resources such as forwarding nodes and flowspace.
The outcome of the Resource Virtualization activities within WP2 is the implementation of a distributed and OpenFlow ver-
sion agnostic slicing mechanism as a component of the HAL. This component, called Virtualization Agent, tries to overcome
two of the main limitations of other approaches like FlowVisor [14] and VeRTIGO [11] that are: Single Point of Failures (SPoF)
and lack of support for versions >= 1.1 of the OpenFlow protocol.

4.1 Optical Resource Reservation and Control

The OpenFlow protocol was initially introduced to allow programmability in networks; however the initial proposal took
into consideration only the packet switches of the network. As opposed to the packet switch, an OpenFlow enabled circuit
switch consists of a cross-connect table instead of a matching packets table. This subsection describes the changes needed
to be applied to the original Stanford implementation in order to control the ADVA optical ROADM network elements.
Amendments in the protocol, as expected, need to be applied both on the OpenFlow agent as well as the controller used
to control the device itself.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 26
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

The implementation of the OpenFlow datapath for the ROADM network element is based on the circuit switching ex-
tensions ver. 0.3 [4]. These extensions are merged with the OpenFlow specification v1.0 and have been developed in a
way that it does not break the protocol structure size and fields. Additionally to these extensions we have developed some
further extensions that are required for the ADVA ROADM network element to be controlled by OpenFlow.

In the following a short outline of the most important changes included in the OpenFlow addendum is provided though
readers interested to know more about the OpenFlow circuit extensions should refer to the original document [4]. First of
all, additional capabilities have been added in the features reply message to accommodate the extra features of the optical
switch. Also in the features reply message a new structure has been added to describe the physical ports (ofp_phy_cport) of
a circuit switch and some of the existing padding bytes have been used to specify the number of circuit ports in the optical
switch.

Moreover, there are some additional messages that have been defined to enable control of the optical devices. Optical
cross connections are setup and torn down by the controller using the CFLOW_MOD message and some errors message
types have been added to inform the controller if something goes wrong. The CFLOW_MOD message contains the so called
logical equivalent of ofp_match structure, the ofp_connect structure which describes the cross connection inside the switch.
Also a CPORT_STATUS message has been added to allow the switch to inform the controller about changes in the state of
the physical circuit port.

In addition to these extensions, we have utilized the flexibility OpenFlow provides by defining a number of extensions
using the OFPT_VENDOR (4) message type which is used as a stage is foreseen as a staging area for new protocol (experi-
menter) features. Vendor extension feature allows for extending the protocol without breaking the compatibility with the
base protocol specification.

The vendor OpenFlow message contains a field vendor after the OpenFlow header which is the vendor id for the
device/vendor that this message has been implemented. A vendor code has also been defined for the ADVA ROADM:s,
OOE_VENDOR_ID (0x41445641) to identify a set of messages that are specific for this device. Furthermore, a new header
was developed for this type of message:

struct ooe_header {

struct ofp_header header; // openflow header

uint32_t vendor; // vendor id

uint32_t type; // message type (O0E_ message type)
uint8_t data(0); // message payload

In addition, a number of device specific messages and respective codes were defined in order to identify them. The
purpose of these types will be explained in the following paragraphs.

enum ooe_type {
OOE_SWITCH_CONSTRAINTS_REQUEST,// switching constraints
OOE_SWITCH_CONSTRAINTS_REPLY, // switching constraints
00OE_POWER_EQ_REQUEST, // power equalization
O0OE_POWER_EQ_REPLY, // power equalization

Switching constraints describe how the physical ports are connected with each other inside the ROADM. This relation-
ship between ports comes from the internal network element configuration. The device comprises a number of physical
cards connected with each other through fiber jumpers. The switching constraints map informs whether the optical signal
can flow between particular ports. However, it should be noted that switching constraints do not tell whether a setup is
really possible for a lightpath, even if these ports are physically connected. In order to be able to determine whether it is

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 27
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

indeed able to do that, the features of the port must be consulted to check that the specified wavelength A is supported by
both ports.

The ADVA ROADM cards require that the power equalization procedure to be triggered after a cross-connection is cre-
ated in the Wavelength Selective Switch (WSS). Without power equalization, the ROADM card will be blocking the signal
flow. The extended OpenFlow controller can send a power equalization request to the OpenFlow switch and therefore in-
struct the switch to equalize the optical signal power on modules that require such procedure. Such equalization is triggered
by specifying ports and a wavelength. Equalization is triggered on modules that are located along the internal signal path
between these ports; the request is unidirectional.

4.2 Resource Virtualization

Resource virtualization in HAL-enabled devices is achieved with the virtualization mechanisms implemented through the
Virtulization Agent (VA) and the Logical Switch Instances (LSIs). Other approaches like [14] or [11] do not provide the support
for OpenFlow protocol versions beyond 1.0 and, moreover, introduce an additional layer on the control channel to obtain the
virtualization of the network resources which represents a SPoF. The implemented framework aims at providing a distributed
virtualization architecture (no SPoFs) which is able to run on multi-version OpenFlow switch network scenarios.

The VA, whose implementation has been described in detail earlier in this deliverable 2.2.3, aims at virtualizing the
forwading plane with flowspace slicing techniques; see also Deliverable D2.2 [7] for more details.

LSIs allows the partitions of the physical devices into several virtual switches. Each virtual switch is configured as a
subset of ports of the physical device and includes an endpoint that supports a given version of the OpenFlow protocol and
connects to a single OpenFlow controller.

While the objective of the VA is to allow the forwarding plane to be shared among multiple controllers, each with distinct
forwarding logic, the objective of the LSIs is to logically extend the forwarding plane with more nodes than the number
actually available in the physical infrastructure. The combination of the two mechanisms permits each HAL-enabled physical
node to be split into multiple logical nodes and each logical node to be shared among different OpenFlow controllers.

The LSI management is located in the Cross-Hardware Platform Layer and implemented with the class named "switch_manager"
in xdpd/management/switch_manager.h whose main methods are listed in Figure 4.1.

4.3 Resource Description

Datapath resource descriptions are required both for network management and control systems in order to distinguish
different types of network nodes and their capabilities. The knowledge about a resource is presented to the network users
or applications and used for the reservation and control of some parts of the resource (or the whole resource). Resource
description can be also used internally in HAL, for example, for the translation of OpenFlow requests into device-specific
configuration. In ALIEN we employ different approaches for resource description as appropriate by the device type, as
explained in the remainder of this section.

4.3.1 Resources in Programmable Packet Switching Devices

Programmable packet switching devices, such as network processors and CPU-based switches, have a basic device structure
(i.e. flow-tables, ports) which is coherent with the OpenFlow data model. However, the device programmability features
specific to each platform open a new aspect of datapath management. The node management system (could be performed
by the OpenFlow controller) may provide knowledge about the required data plane protocols.

Protocol description contains the header format and header placement within the packet and allows a device to locate,
parse, modify or remove such a protocol header during packet processing. An example of such description, using the P4
language [12] is presented below. The network headers description contains fields labels, position from the beginning of
the header and bit length meaning are presented here:

header ethernet {

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 28
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

"OpenFlow
Protocol

Cross-Hardware Platform Layer °

OpenFlow OpenFlow
Endpoint Endpoint

Virtualization
Agent (VA)

L%L.,_“ LSI __-~
SWITCH MANAGER
* create switch

- destrd§ switch

* destroy all switches

* find by dpid

* find by name

list sw_names

Other Plugins
(e.g. NETCONF,
OFConfig)

Figure 4.1: Implementation of the Logical Switch Instances management within the HAL architecture.

fields {

dst_addr : 48; // width in bits
src_addr : 48;

ethertype : 16;
}
}
header ipv4 {
fields {
__skip__ : 8; // not interpreted bits
dscp : 6;
ecn : 2;
__skip__ : 56;
src_ip : 32;
dst_ip : 32;
__skip__ 16;
ip_proto : 8;
}
}
header udp {
field {
src_port : 16;
dst_port : 16;
__skip__ : 32;
Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3

Date of Issue:

12/06/2014

29

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

}
header vxlan {
field {
__skip__ : 32;
segment_id : 24;
__skip__ : 8;

Some header fields, which are not required during packet processing in the datapath, and are not used by flow entries,
are to be interpreted by the special directive __skip__. The sequence of headers parsing within the packet is specified in
the following description:

parser ethernet {
switch(ethertype) { \\ header field based lookup
case 0x800: ipv4; \\ what is next header

}
parser ipv4 {
switch(ip_proto) {
case 0Ox11: udp;

}
parser udp {
switch(dst_port) {

case 0x12B5: vxlan;

3

As listed above, you can distinguish the next-parsed header by a specific value of any proper header field.

When these descriptions are applied over a network node, then the node forwarding engine is capable of parsing and
processing based only on Ethernet, IPv4, UDP and VXLAN headers. Then, other header fields passed in flow entries are not
recognized and flow entries are skipped.

During the whole device life-time, one set of protocols may be replaced with a new set of protocols, depending on
the actual network device role in the network. The current implementation of HAL does not support data plane protocol
knowledge management. Deliverable [D2.2] describes a proposition of datapath architecture that could provide protocol
knowledge management capabilities which may be implemented in the form of the early prototype till the end of the ALIEN
project.

4.3.2 Resources in Lightpath Devices

As described earlier in this deliverable, circuit switches are functioning in a completely different way compared to the packet
processing devices, and thus require a new set of resource description. The ALIEN project has decided to use the proposed
extension to the OpenFlow protocol for circuit switched devices [4] that have been already included in the succeeding
versions of the protocol (i.e. v1.4). This extension was implemented in the HAL prototype for LO switch (ADVA DWDM
system).

The structure used to describe a physical port in packet processing devices has been modified in order to be able to
describe a circuit switch port. At this point we should note the existence of peer_datapath_id and peer_port_no fields since
it is not possible in optical networks to discover neighbors using LLDP frames.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 30
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

/%

* Circuit switch physical port description

*/
struct ofp_phy_cport {
uintl6_t port_no;

uint8_t hw_addr [OFP_ETH_ALEN];

/* Ethernet address - 6-byte */

uint8_t name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated - 16 byte */

uint32_t config;
uint32_t state;

/%
/%

Bitmap of OFPPC_* flags. */
Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_x that describe features. All bits zeroed if

* unsupported or unavailable.

uint32_t curr;
uint32_t advertised;
uint32_t supported;
uint32_t peer;

/%
/%
/*
/%

uint32_t supp_sw_tdm_gran; /*

uintl6_t supp_swtype;

/%

uint16_t peer_port_no; /*
uint64_t peer_datapath_id; /*
uint16_t num_bandwidth; /%

uint8_t padl[6];
uint64_t bandwidth [0]

/%
; /%

*/
Current features. */
Features being advertised by the port. */
Features supported by the port. */

Features advertised by peer. */

TDM switching granularity OFPTSG_x flags */
Bitmap of switching type OFPST_x flags */
Discovered peer's switchport number */
Discovered peer's datapath id */

Identifies number of bandwidth array elements */
Align to 64 bits */

Bitmap of OFPCBL_* or OFPCBT_x flags */

AL EN

The cfow_mod message contains the so-called logical equivalent of the ofp_match structure and it is the message sent

to the circuit switch in order to modify its cross-connect table.

/* Circuit flow setup, modification and teardown (controller -> datapath) */

struct ofp_cflow_mod {

struct ofp_header header;

uint16_t command;

uintl16_t hard_timeout;

uint8_t pad[4];

struct ofp_connect_ocs connect;

/* Openflow header */
/* one of OFPFC_* commands */

/* max time to connection tear down,

if O then explicit tear-down required */

/* Align to 64 bits */

/* 8B followed by variable length arrays */

struct ofp_action_header actions[0]; /* variable number of action */

The ofp_connect_ocs structure describes the cross-connected ports inside the switch:

/* Description of a cross-connection */

struct ofp_connect_ocs {

uint16_t wildcards;

uintl16_t num_components;

/* identifies ports to use below */
/* identifies number of cross-connects

to be made - num array elements */

Project:
Deliverable Number:
Date of Issue:

ALIEN (Grant Agr. No. 317880)

D2.3
12/06/2014

31

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN
uint8_t padl[4]; /* Align to 64 bits */
uint16_t in_port[0]; /* OFPP_* ports - real or virtual */
uint16_t out_port[0]; /* OFPP_* ports - real or virtual */
struct ofp_tdm_port in_tport[0]; /* Description of a TDM channel */

struct ofp_tdm_port out_tport[0];

struct ofp_wave_port in_wport[0]; /* Description of a Lambda channel */
struct ofp_wave_port out_wport[0];

};

Finally, a cport_status message has been added to allow the switch to inform the controller about changes in the state
of the physical circuit port:

struct ofp_cport_status {

struct ofp_header header;

uint8_t reason; /* One of OFPPR_* */
uint8_t padl[7]; /* Align to 64 bits */
struct ofp_phy_cport desc; /* Circuit port description */

4.3.3 Resources in Point-to-Multipoint Devices

Point-to-multipoint devices (GEPON and DOCSIS devices in the ALIEN project) are exposed to the network management
(and network control) as a OpenFlow network node, abstracting the whole access network.

4.3.3.1 Resources in DOCSIS Architecture

DEVICE MAP

Certain structures are required in order to maintain the coherence between all devices connected to the ALIEN-Hardware
INtegration Proxy (ALHINP) and the virtual model exposed to the OpenFlow controller. As soon as a cable modem is detected
in the network, ALHINP creates the corresponding structure for it. After assigning the corresponding VLAN_VID, the rest of
the structure is filled with the parameters as soon as they are discovered (no relationship between OUI and CM is required
in advance as they are dynamically detected by ALHINP).

struct device {

uint64_t MAC_OUI; /*MAC of the QUIx/
uint64_t DPID; /*DPID of the OUIx/
uint16_t vlan; /*Vlan provisioned over CMTS*/

};

std::map< uint64_t mac_CM, struct device> devicemap;

The devicemap stores for each cablemodem the corresponding OpenFlow Parameters and VLAN assigned by ALHINP
proxy. This map is dynamically filled when a connection from OUI or CM is detected.

PORT STRUCTURES
Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 32
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

struct realport {

uint64_t DPID;
uint32_t realport_id;

};

/*DPID of the OUIx*/
/*Real port ID at DPIDx*/

std::map< uint32_t virtualport, struct realport> portmap;

AL EN

The portmap stores the ports enabled by the proxy, which are virtually exposed to the controller. For each virtualport

its corresponding realport and OUI_DPID is stored.

ALHINP CONFIGURATION
The configuration of ALHINP,which is the component that orchestrates all the devices of the architecture,is stored in the

next structure, where network user-defined parameters are defined.

struct ALHINP {
uint64_t ALHINP_DPID;

/*DPID of ALHINP exposed to the controllerx/

/*0F version of the controller */

/*0F AGS LISTENING IP x/

/*0F AGS LISTENING PORT */

/*Port where CMTS is attached*/

/*Port where Provisioning system is attachedx*/
/*Port for the ALHINP 0QUI connections*/

/*0F OUI listening IP */
/*0F OUI listening Port */

/*Port connected to the Cablemodem*/

/*DOCSIS Provisioning server IP x/

This structure describes the overall ALHINP configuration parameters, given by the user, according to the architecture

std: :string CTRL_IP; /*Controller IP*/
std::string CTRL_OF_VERSION;
std::string CTRL_PORT; /*0F Port */
std::string LISTEN_IP_AGS;
std::string LISTEN_PORT_AGS;
uint32_t CMTS_PORT;
uint32_t DPS_PORT;
uint32_t ALHINP_PORT;
std::string LISTEN_IP_OUI;
std::string LISTEN_PORT_OUT;
uint32_t NETPORT;
std::string DPS_IP;
std: :string CMTS_IP; /*CMTS IP x/
};
setup.
Project: ALIEN (Grant Agr. No. 317880)

Deliverable Number:
Date of Issue:

D2.3
12/06/2014

33

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

5 Summary

This document provides the implementation details of Hardware Abstraction Layer (HAL). The HAL provides a platform
for OpenFlow protocol implementation on non-OpenFlow capable network devices. Two sub-layers which comprise HAL
are Cross-Hardware Platform layer and Hardware-Specific layer. Based on the design specifications developed within the
ALIEN project, this document provides an account of implementing the two aforementioned layers. The goal of Cross-
Hardware Platform layer is to provide a device abstraction using the services of Hardware-Specific layer which has to deal
with the underlying hardware platform peculiarities. The Cross-Hardware Platform layer implementation is unanimous for all
hardware platforms which makes it an ideal place to implement functionalities like network management and virtualization.
Moreover, it also helps achieve an OpenFlow version agnostic device abstraction. The implementation of Hardware-Specific
layer has to be carried out for each underlying hardware platform and sometimes it is even different from device to device
within the same network platform category. Therefore, depending on the hardware architecture of the underlying device,
the hardware-specific layer has to be implemented adaptively to offer the functionality described in the specifications.

The document describes the implementation details of Cross-Hardware Platform layer and its plug-ins, i.e., NETCONF
and Virtualization Agent. In addition, the experiences are shared for implementing Hardware-Specific layer on most widely
used network device platforms such as programmable hardware, transport network devices (optical or circuit switch) and
closed platform with proprietary communication protocols such as GEPON. By achieving functional implementations of
Hardware-Specific layer on the aforementioned devices and its integration with the Cross-Hardware Platform layer to realize
OpenFlow capabilities validates the feasibility of HAL architecture design and its specifications.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 34
Date of Issue: 12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

References

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

EZappliance: NP-3 Network Processor. http://www.ezchip.com/p_np3.htm.
NetFPGA. http://netfpga.org/
Revised OpenFlow Library. http://www.roflibs.org/.

Extension to the OpenFlow Protocol in support of Circuit Switching. http://archive.openflow.org/wk/images/
8/81/0penFlow_Circuit_Switch_Specification_v0.3.pdf, 2010.

Deliverable D3.1: Hardware platforms and switching constraints. http://www.fp7-alien.eu/files/
deliverables/D3.1-ALIEN-final.pdf, 2013.

Deliverable D3.2: Specification of hardware specific parts. http://www.fp7-alien.eu/files/deliverables/
D3.2-ALIEN-final.pdf, 2013.

Deliverable D2.2: Specification of Hardware Abstraction Layer. http://www.fp7-alien.eu/files/
deliverables/D2.2-ALIEN-final.pdf, 2014.

OpenFlow Specifications. https://www.opennetworking.org/sdn-resources/onf-specifications/
openflow, 2014.

t. Ogrodowczyk, et al. Hardware Abstraction Layer for Non-OpenFlow Capable Devices. In Proceedings of the TERENA
Networking Conference (TNC), May 2014.

[10] D. Parniewicz, et al. Design and Implementation of an OpenFlow Hardware Abstraction Layer. In Proceedings of the
ACM SIGCOMM Workshop on Distributed Cloud Computing (DCC), August 2014. Accepted for publication.
[11] R. Doriguzzi Corin et al. VeRTIGO: Network Virtualization and Beyond. In Proceedings of the European Workshop on
Software Defined Networking (EWSDN), pages 24--29, Oct 2012.
[12] D. Heimbigner. P4: A Logic Language for Process Programming. In Proceedings of the 5th International Software
Process Workshop on Experience with Software Process Models, ISPW '90, pages 67--70, Los Alamitos, CA, USA, 1990.
[13] R.Enns, et al. Network Configuration Protocol (NETCONF). https://tools.ietf.org/html/rfc6241, 2011.
[14] R. Sherwood, et al. Carving Research Slices out of Your Production Networks with OpenFlow. SIGCOMM Comput.
Commun. Rev., 40(1):129--130, January 2010.
[15] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the USENIX Annual Technical Conference,
pages 101--112, Boston, MA, 2012.
Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3 35
Date of Issue: 12/06/2014

http://www.ezchip.com/p_np3.htm
http://netfpga.org/
http://www.roflibs.org/
http://archive.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf
http://archive.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf
http://www.fp7-alien.eu/files/deliverables/D3.1-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.1-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D2.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D2.2-ALIEN-final.pdf
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://tools.ietf.org/html/rfc6241

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Acronyms

AFA: Abstracted Forwarding API

ALHINP: ALIEN Hardware INtegration Proxy
API: Application Programming Interface

CM: Cable Modem

CMM: Control and Management Module
CHPL: Cross-Hardware Platform Layer
DOCSIS: Data Over Cable Service Interface Specification
FPGA: Field Programmable Fate Gate Array
HAL: Hardware Abstraction Layer

HSL: Hardware Specific Layer

HSP: Hardware Specific Part

HPA: Hardware Pipeline API

LTE: Long Term Evolution

NMS: Network Management System

NPU: Network Processing Unit

PAD: Programmable Abstraction for Datapath
ROADM: Reconfigurable Optical Add drop Module
ROFL: Revised OpenFlow Library

SDN: Software Defined Networking

OF: OpenFlow

TCAM: Ternary Content-Addressable Memory
TCP: Transmission Control Protocol

TLS: Transport Layer Security

VA: Virtualization Agent

VG: Virtual Gateway

VoD: Video on-Demand

xDPd: Extensible Data Path Daemon

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D2.3
Date of Issue: 12/06/2014

AL EN

36

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Appendix A

AL EN

VA subset

VA abstract method

VA method implementation in ROFL

Slice

Port presence

Function declaration:

bool has_port(string port_name);
located in:

virtual-agent/slice.h

Virtualization
Agent

Is active Function declaration:
bool is_active();
located in:
virtual-agent/virtualagent.h
Add slice Function declaration:

void add_slice(slicex slice_to_add, bool connect);
located in:
virtual-agent/virtualagent.h

Add flowspace

Function declaration:

void add_flowspace(flowspacex flowspace_to_add);
located in:

virtual-agent/virtualagent.h

Add switch

Function declaration:

void add_switch(va_switchx switch_to_add);
located in:

virtual-agent/virtualagent.h

Check slice existence

Function declaration:

bool check_slice_existance(string slice_name, uint64_t dpid);
located in:

virtual-agent/virtualagent.h

Flow Entry Analysis
and modification

Function declaration:

oflx_flow_entry_tx flow_entry_analysis(cofctl xctl, of1x_flow_entry_t
xentry, openflow_switchx sw);

located in:

virtual-agent/virtualagent.h

Actions analysis and
modification

Function declaration:

oflx_action_group_t* action_analysis(cofctl xctl, of1x_action_group_t
xaction_group, openflow_switchx sw);

located in:

virtual-agent/virtualagent.h

Group analysis and
modification

Function declaration:

cofmsg_group_modsx* group_mod_analysis(cofctl xctl, cofmsg_group_mod
xmsg, openflow_switchx sw);

located in:

virtual-agent/virtualagent.h

Flowspace

Stores the slices

flowspaces

Function declaration:
struct flowspace;

located in:
virtual-agent/flowspace.h

VA
Switch

Virtual

Check
match

Flowspace

Function declaration:

bool check_match(const of1x_packet_matches_t pkt,
std::list<flowspace_match_tx> it);

located in:

virtual-agent/va_switch.h

VA
Switch

Virtual

Compare match

Function declaration:

bool compare_match_flow(const oflx_packet_matches_tx pkt,
flowspace_match_tx it);

located in:

virtual-agent/va_switch.h

Table A.1: Virtualization Agent implementation within the xDPd’s code

Project:

Date of Issue:

Deliverable Number:

ALIEN (Grant Agr. No. 317880)

D2.3

12/06/2014

37

Deliverable Number:
Date of Issue:

D2.3
12/06/2014

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN
AFA subset AFA abstract | AFA method implementation in ROFL
method
Init-driver Function declaration:
hal_result_t hal_driver_init (const char* extra_params);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Destroy-driver Function declaration:
hal_result_t hal_driver_destroy (void);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Create-switch Function declaration:
hal_result_t hal_driver_create_switch (charx name, uint64_t dpid,
of_version_t of_version, unsigned int num_of_tables, intx ma_list);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Get-switch Function declaration:
of _switch_snapshot_t* hal_driver_get_switch_snapshot_by_ dpid(uint64_t
Datapath dpid);
Management located in:
rofl-core\src\rofl\datapath\hal\driver.h
Destroy-switch Function declaration:
hal_result_t hal_driver_destroy_switch_by_dpid (uint64_t dpid);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Get-ports Function declaration:
switch_port_name_list_tx hal_driver_get_all_port_names (void);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Get-port Function declarations:
switch_port_snapshot_tx hal_driver_get_port_snapshot_by_name (const
char xname);
switch_port_snapshot_t« hal_driver_get_port_snapshot_by_num (uint64_t
dpid, unsigned int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Enable-port Function declarations:
hal_result_t hal_driver_bring_port_up (const charx name);
hal_result_t hal_driver_bring_port_down_by_num (uint64_t dpid, unsigned
int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Disable-port Function declarations:
hal_result_t hal_driver_bring_port_down (const charx name);
hal_result_t hal_driver_bring_port_down_by_num (uint64_t dpid, unsigned
int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Attach-port-to- Function declaration:
switch hal_result_t hal_driver_attach_port_to_switch (uint64_t dpid, const charx
Datapath name, unsigned intx port_num);
Management located in:
rofl-core\src\rofl\datapath\hal\driver.h
Detach-port-from- 'Function declarations:'
switch hal_result_t hal_driver_detach_port_from_switch (uint64_t dpid, const charsx
name);
hal_result_t hal_driver_detach_port_from_switch_at_port_num (uint64_t
dpid, const unsigned int port_num);
located in:
rofl-core\src\rofl\datapath\hal\driver.h
Project: ALIEN (Grant Agr. No. 317880)

38

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

Set-port-drop Function declaration:
hal_result_t hal_driver_oflx_set_port_drop_received_config (uint64_t dpid,
unsigned int port_num, bool drop_received);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowi1x\oflx_driver.h
Set-port-forward Function declaration:
hal_result_t hal_driver_oflx_set_port_forward_config (uint64_t dpid,
unsigned int port_num, bool forward);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowlx\oflx_driver.h
Set-port-packet-in Function declaration:
hal_result_t hal_driver_oflx_set_port_generate_packet_in_config (uint64_t
dpid, unsigned int port_num, bool generate_packet_in);
located in:
Datapath rofl-core\src\rofl\datapath\hal\openflow\openflowi1x\of1x_driver.h
Configuration | Set-port-advertise Function declaration:
hal_result_t hal_driver_oflx_set_port_advertise_config (uint64_t dpid,
unsigned int port_num, uint32_t advertise);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\oflx_driver.h
Set-pipeline-config Function declaration:
hal_result_t hal_driver_oflx_set_pipeline_config (uint64_t dpid, unsigned int
flags, uint16_t miss_send_len);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowi1x\oflx_driver.h
Set-table-config Function declaration:
hal_result_t hal_driver_oflx_set_table_config (uint64_t dpid, unsigned int
table_id, of1x_flow_table_miss_config_t config);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\oflx_driver.h
Packet-out Function declaration:
hal_result_t hal_driver_oflx_process_packet_out (uint64_t dpid, uint32_t
buffer_id, uint32_tin_port, ofl1x_action_group_tx action_group, uint8_tx
buffer, uint32_t buffer_size);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowlx\oflx_driver.h
Add-flow Function declaration:
hal_result_t hal_driver_oflx_process_flow_mod_add (uint64_t dpid, uint8_t
table_id, of1x_flow_entry_txx flow_entry, uint32_t buffer_id, bool
check_overlap, bool reset_counts);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowi1x\oflx_driver.h
Modify-flow Function declaration:
hal_result_t hal_driver_oflx_process_flow_mod_modify (uint64_t dpid,
uint8_t table_id, of1x_flow_entry_txx* flow_entry, uint32_t buffer_id,
oflx_flow_removal_strictness_t strictness, bool reset_counts);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflow1x\oflx_driver.h
Delete-flow Function declaration:
hal_result_t hal_driver_oflx_process_flow_mod_delete (uint64_t dpid,
uint8_t table_id, of1x_flow_entry_tx flow_entry, uint32_t out_port, uint32_t
out_group, oflx_flow_removal_strictness_t strictness);
located in:
Datapath rofl-core\src\rofl\datapath\hal\openflow\openflow1x\oflx_driver.h
Configuration
Project: ALIEN (Grant Agr. No. 317880)

Deliverable Number:
Date of Issue:

D2.3
12/06/2014

39

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Get-flow-stats

Function declaration:

oflx_stats_flow_msg_tx hal_driver_oflx_get_flow_stats (uint64_t dpid,
uint8_t table_id, uint32_t cookie, uint32_t cookie_mask, uint32_t out_port,
uint32_t out_group, oflx_match_group_t *const matches);

located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowi1x\oflx_driver.h

AL EN

Add-group

Function declaration:

rofl_oflx_gm_result_t hal_driver_oflx_group_mod_add (uint64_t dpid,
oflx_group_type_t type, uint32_t id, of1x_bucket_list_t *xbuckets);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowlx\oflx_driver.h

Modify-group

Function declaration:

rofl_oflx_gm_result_t hal_driver_oflx_group_mod_modify (uint64_t dpid,
oflx_group_type_t type, uint32_tid, of1x_bucket_list_t xxbuckets);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowi1x\oflx_driver.h

Delete-group

Function declaration:

rofl_oflx_gm_result_t hal_driver_oflx_group_mod_delete (uint64_t dpid,
uint32_t id);

located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowl1x\oflx_driver.h

Get-group-stats

Function declarations:
oflx_stats_group_msg_tx hal_driver_oflx_get group_stats (uint64_t dpid,
uint32_tid);

Datapath . .
Configuration ofl.x_st.ats_gro.u p_msg_tx hal_driver_oflx_get_group_all_stats (uint64_t
dpid, uint32_tid);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowl1x\oflx_driver.h
Add-port Function declaration:
hal_result_t hal_cmm_notify_port_add (switch_port_snapshot_tx*
port_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h
Modify-port Functions declarations:
hal_result_t hal_cmm_notify_port_status_changed
(switch_port_snapshot_t* port_snapshot);
hal_result_t hal_cmm_notify_monitoring_state_changed
(monitoring_snapshot_state_tx monitoring_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h
Notification Delete-port Functions declaration:
hal_result_t hal_cmm_notify_port_delete (switch_port_snapshot_tx
port_snapshot);
located in:
rofl-core\src\rofl\datapath\hal\cmm.h
Packet-in Functions declaration:
hal_result_t hal_cmm_process_oflx_packet_in (uint64_t dpid, uint8_t
table_id, uint8_t reason, uint32_t in_port, uint32_t buffer_id, uint8_tx
pkt_buffer, uint32_t buf_len, uint16_t total_len, packet_matches_tx
matches);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowlx\oflx_cmm.h
Flow-removed Functions declaration:
hal_result_t hal_cmm_process_oflx_flow_removed (uint64_t dpid, uint8_t
reason, of1x_flow_entry_tx removed_flow_entry);
located in:
rofl-core\src\rofl\datapath\hal\openflow\openflowlx\oflx_cmm.h
Table A.2: Abstract Forwarding APl implementation within the ROFL
project
Project: ALIEN (Grant Agr. No. 317880)

Deliverable Number:
Date of Issue:

D2.3
12/06/2014

40

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

HPA subset

HPA
method

abstract

HPA method implementation in ROFL

Packet

Get-packet-size

Function declaration:

uint32_t platform_packet_get_size bytes (datapacket_t xconst pkt);
located in:

/platform/packet.h

operations

Get-port-in

Function declaration:

uint32_t platform_packet_get_port_in (datapacket_t xconst pkt);
located in:

/platform/packet.h

Packet
operations

Get-packet-field

Function declaration:

uint64_t platform_packet_get_eth_src (datapacket_t xconst pkt);
uint64_t platform_packet_get_eth_dst (datapacket_t xconst pkt);
uint16_t platform_packet_get_eth_type (datapacket_t xconst pkt);
uint16_t platform_packet_get_vlan_vid (datapacket_t xconst pkt);
uint8_t platform_packet_get_vlan_pcp (datapacket_t xconst pkt);
uint32_t platform_packet_get_mpls_label (datapacket_t xconst pkt);
uint8_t platform_packet_get_mpls_tc (datapacket_t xconst pkt);
bool platform_packet_get_mpls_bos (datapacket_t xconst pkt);
uint8_t platform_packet_get_ip_proto (datapacket_t xconst pkt);
uint8_t platform_packet_get_ip_ecn (datapacket_t *const pkt);
uint8_t platform_packet_get_ip_dscp (datapacket_t *xconst pkt);
uint32_t platform_packet_get ipv4_src (datapacket_t xconst pkt);
uint32_t platform_packet_get_ipv4_dst (datapacket_t xconst pkt);
uint16_t platform_packet_get_tcp_src (datapacket_t xconst pkt);
uint16_t platform_packet_get tcp_dst (datapacket_t xconst pkt);
uintl6_t platform_packet_get udp_src (datapacket_t *xconst pkt);
uint16_t platform_packet_get_udp_dst (datapacket_t xconst pkt);
uint8_t platform_packet_get_icmpv4_type (datapacket_t xconst pkt);
uint8_t platform_packet_get_icmpv4_code (datapacket_t xconst pkt);
uint8_t platform_packet_get_pppoe_code (datapacket_t xconst pkt);
uint8_t platform_packet_get_pppoe_type (datapacket_t xconst pkt);
uint16_t platform_packet_get_pppoe_sid (datapacket_t xconst pkt);
located in:

| /platform/packet.h

Project:
Deliverable Number:
Date of Issue:

ALIEN (Grant Agr. No. 317880)

D2.3
12/06/2014

41

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor ALIEN

Set-packet-field

Function declaration:

void platform_packet_set_eth_src (datapacket_tx pkt, uint64_t eth_src);
void platform_packet_set_eth_dst (datapacket_t* pkt, uint64_t eth_dst);
void platform_packet_set_eth_type (datapacket_tx pkt, uintl6_t eth_type);
void platform_packet_set_vlan_vid (datapacket_tx pkt, uint16_t vian_vid);
void platform_packet_set_vlan_pcp (datapacket_tx pkt, uint8_t vlan_pcp);
void platform_packet_set_mpls_label (datapacket_tx pkt, uint32_t label);
void platform_packet_set_mpls_tc (datapacket_t* pkt, uint8_t tc);

void platform_packet_set_mpls_bos (datapacket_t* pkt, bool bos);

void platform_packet_set_ip_proto (datapacket_t* pkt, uint8_t ip_proto);
void platform_packet_set_ip_dscp (datapacket_t* pkt, uint8_t ip_dscp);
void platform_packet_set_ip_ecn (datapacket_t* pkt, uint8_t ip_ecn);
void platform_packet_set_ipv4_src (datapacket_tx pkt, uint32_t ip_src);
void platform_packet_set_ipv4_dst (datapacket_tx pkt, uint32_tip_dst);
void platform_packet_set_tcp_src (datapacket_tx pkt, uint16_t tcp_src);
void platform_packet_set_tcp_dst (datapacket_tx pkt, uint16_t tcp_dst);
void platform_packet_set_udp_src (datapacket_tx pkt, uintl6_t udp_src);
void platform_packet_set_udp_dst (datapacket_tx pkt, uint16_t udp_dst);
void platform_packet_set_icmpv4_type (datapacket_tx pkt, uint8_t type);
void platform_packet_set_icmpv4_code (datapacket_t* pkt, uint8_t code);
void platform_packet_set_pppoe_type (datapacket_t* pkt, uint8_t type);
void platform_packet_set_pppoe_code (datapacket_t* pkt, uint8_t code);
void platform_packet_set_pppoe_sid (datapacket_tx pkt, uint16_t sid);
located in:

/platform/packet.h

Copy-time-to-live

Function declaration:

void platform_packet_copy_ttl_out (datapacket_tx pkt);
located in:

/platform/packet.h

Decrement-time-to-
live

Function declaration:

void platform_packet_dec_nw_ttl (datapacket_tx pkt);
located in:

/platform/packet.h

Packet
operations

Pop-tag

Function declaration:

void platform_packet_pop_vlan (datapacket_tx pkt);

void platform_packet_pop_mpls (datapacket_tx pkt, uint16_t ether_type);
void platform_packet_pop_pppoe (datapacket_tx pkt, uintl6_t ether_type);
located in:

/platform/packet.h

Packet

Push-tag

Function declaration:

void platform_packet_push_vlan (datapacket_tx pkt, uint16_t ether_type);
void platform_packet_push_mpls (datapacket_tx pkt, uint16_t ether_type);
void platform_packet_push_pppoe (datapacket_tx pkt, uint16_t ether_type);
located in:

/platform/packet.h

operations

Drop-packet

Function declaration:

void platform_packet_drop (datapacket_t* pkt);
located in:

/platform/packet.h

Output-packet

Function declaration:

void platform_packet_output (datapacket_tx pkt, switch_port_tx port);
located in:

/platform/packet.h

Allocate-memory

Function declaration:

voidx platform_malloc(size_t length);
located in:

/platform/memory.h

Project:
[Nl'elmajﬂy Number:
Msnadentent

ALIEN (Grant Agr. No. 317880)

D2.3
12/06/2014

42

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

Free-memory

AL EN

Function declaration:

void platform_free(voidx* data);
located in:
/platform/memory.h

Copy-memory

Function declaration:

voidx platform_memcpy (void* dst, const voidx src, size_t length);
located in:

/platform/memory.h

Move-memory

Function declaration:

voidx platform_memmove (voidx dst, const voidx src, size_t lengt);
located in:

/platform/memory.h

Set-memory

Function declaration:

voidx platform_memset (voidx src, int c, size_t length);
located in:

/platform/memory.h

Mutex &
Counter
atomic
operations

Init-mutex

Function declaration:

platform_mutex_t* platform_mutex_init (void* params);
located in:

/platform/lock.h

Destroy-mutex

Function declaration:

void platform_mutex_destroy (platform_mutex_tx mutex);
located in:

/platform/lock.h

Lock-mutex

Function declaration:

void platform_mutex_lock (platform_mutex_tx mutex);
located in:

/platform/lock.h

Mutex &
Counter
atomic
operations

Unlock-mutex

Function declaration:

void platform_mutex_unlock (platform_mutex_tx mutex);
located in:

/platform/lock.h

Increase-counter

Function declaration:

void platform_atomic_inc32 (uint32_tx counter, platform_mutex_tx mutex);
void platform_atomic_inc64 (uint64_tx counter, platform_mutex_tx mutex);
located in:

/platform/atomic_operations.h

Decrease-counter

Function declaration:

void platform_atomic_dec32 (uint32_tx counter, platform_mutex_tx mutex);
void platform_atomic_dec64 (uint64_tx counter, platform_mutex_tx mutex);
located in:

/platform/atomic_operations.h

Notification

Process-packet-in-
pipeline

Function declaration:

void __oflx_process_packet_pipeline (const of _switch_t xsw, datapacket_t
xconst pkt);

void of1x_process_packet_out_pipeline (const of 1x_switch_t *sw,
datapacket_t *const pkt, const oflx_action_group_tx apply_actions_group);
located in:

/openflow/openflowlx/pipeline/oflx_pipeline pp.h

Table A.3: Hardware Pipeline APl implementation within the ROFL

project

Project:
Deliverable Number:
Date of Issue:

ALIEN (Grant Agr. No. 317880)

D2.3

12/06/2014

43

ol

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

suonouny 433I|S Suluyap s9|Y J9peaH 'Y d|qel

suoBIUYIP VA

y-uasde|enyiin/auade-jenuin/pdpx

uonejuawsajdwi 221s

y-921|s/1usde-jennin/pdpx

uopejudawsa|dwi 32edsmol}

y-aoedsmolj/iusde-jenuin/pdpxa

aseqeiep 1uady uonezienuiA Joj sSULILS YdoHMs

Y youms ea/iusde-jennin/pdpx

uonduasaqg

3|14 Jopeay

J98eue|n ul-8n|d 40} S93BJDIU| (7Y 9|geL

44

‘pasueyd a1e3s paloyuow e 1eyl ‘ul-8njd ay3 Jo uoredyNoN

‘(aoysdeus Suuoliuow *3 93e3s joysdeus SulioyUOW
1suod)pasdueyo 91e1s” SulioluoOwW AJl0OU PIOA [ENLIA

pa13]ap sem 3od Mau e jeyi ‘ul-8njd ay3 Jo uonedYRON

!(3oysdeus i0d *x1 3oysdeus 140d” YoUMS JSUOD)palS|op HOd AJ0U PIOA [ENLIA

IS e woJj paydeiap sem 3iod e ey ‘uj-8nid ayi Jo uonesyoN

{(3oysdeus od *3 10ysdeus Jo0d™ YoUMS 3SU0d)paydeisp Hod AJ1ou PIOA [BNUIA

pagueyd snieis 1od e ey ‘uj-8nid ay3 40 uonedIyoN

‘(roysdeus 1i0d
*} joysdeus pod Yydums 3suod)padueyd snieis 1od AJ1ou pIoA |[enUIA

IST B 01 payoene sem 14od mau e 1eyl ‘ul-8njd ay1 4O UOLIEIYLION

‘(3oysdeus 1i0d *110ysdeus” 10d™ ydouMs 1suod)paydene 1od AJ1ou pIOA |enUIA

pappe sem 11od Mau e 1ey3 ‘ul-8n|d ay3 Jo UoLEIYLON

{(roysdeus pod x1j0ysdeus 10d YoUMs Jsuod)pappe 1od Ajllou pIOA [ENUIA

aweu ul-3n|d ay3 J0 |eAd1IRY

(p1oA)aweu 198 Bulils:ipls [eNMIA

uj-8nid ayi jo uopez|eniu

{(p1oA)11ul PIOA [ENUIA

uonduasaqg

uopeliepag uoydung

ALIEN (Grant Agr. No. 317880)

D2.3

Project:

Deliverable Number:

Date of Issue:

12/06/2014

AL EN

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

SuoljeJe|d3p UordUNS |dY Y4V SululeIu0D S3|Y Japeay D J019S V (8'Y dqeL

(uonesynoN y4v) syoeq|ed Juaas yiedelep TvH

Y wwo/xTj0/xTMmojuado/molyuado/|ey/yiederep/|404/24s/2100-|404

(uoneian3yuo) y4y) suonduny uoneindyuod yiedelep TvH

yusAup/xTjo/xTmopusdo/moluado/|ey/yiederep/|joa /21s/9103-|j04

(uoneaynoN y4v) sx2eqjed JusAd 1od TvH

Y wwd/[ey/yredelep/|jol/21s/2403-|40J

(2uswia8euen y4Yy) suorouny JusWISeuew JIALIP TYH

yuanup/jey/ylederep/|30./24s/2402- 401

uonduasaq

9|14 Japeay

suopouny

jua8e uoyezijen}JiA d|qeua 03 Payipow sajy 3p0d Addx 40 IsIT 12V d|qeL

45

"S9|NJ 22BdSMO[} 93 UO pue e3ep ¥ saydjew 3axded XTj0 ay3
UO PISeq SMO|} MaU 33 40} J3]|0J3U02 IYSII 3Y3 S1939]3S 1By} WISIUBYIBW 3y} pappe

22'wwd/pdpx

wisiueydaw Suidijs 3y} 3|geUS 03 YA Yl 01 UOLIBUUOD 3y} pappe

julodpua ATJo/ATMOfuado/mopuado/pdpx

SSUDTIMS [EMHTA SUT OF SIS[[OTIUOD SPPE TeUT
9UO pUE SJ3|[0J3UOD OU YHM S3UIIIMS [ENIIIA MBU S9IBJD JBY} UOLIdUNS B pappe

youUms~ ATmoluado/ATmojjuado/moluado/pdpx

9oue)sul Julodpua 3y} 9A31J324 03 UOLdUNY B pappe

youms mofpjuado/mopuado/pdpx

juiodpua ay3 03 pa3daUUOD
$19||0431U02 3Y3 0} SJa3UI0d BY3 UIRICO O3 WA DYl MO||e 1By} suolduny pappe

y-ulodpua/mo|yuado/pdpx

uonduasaqg

3|14 JapeaH

aseqelep

juaSe uonez|jenMIA J0j SUOLIIUNY SS3JE SUlUYSP SI|Y JOPEAH 9'V d|qeL

J98euew uidn|d ayy 03 s8umas paqlIIsap-anoge ay3 Jo uonesidal

*'9d02s 1004/3Yuos/suidn|d/quswadeuew/pdpx

s3umas juade uonezienuia

y-adods juade-|enuin/iusde-jennin/3yuod/suidnid/auswadeuew /pdpx

s|ie3ap ,549]|043u0d pue sSumas dl|s

y-adoas 9d1|s/1uade-|enuin/3yuod/suidn|d/quswadeuew/pdpx

s9|nJ aedsmoyy

y-adods saedsmol/iuade-jenuin/3yuod/suisnid /iuswaseuew /pdpx

uonduasaqg

3|14 Jopeay

ALIEN (Grant Agr. No. 317880)

D2.3

Project:

Deliverable Number:

Date of Issue:

12/06/2014

AL EN

D2.3 Report on Implementation of the Common Part of an OpenFlow Datapath Element and the Extended FlowVisor

suoneJe|dap uonrduNy YdH Sululeluod sa|y Japeay D JO 1S Y 16V d|geL

46

(uoneaynoN vYdH) saurinos 3uissasoud 1ayoed sujadid ydH

y-auadid/xT40
/auijadid/xTmojuado/mopusdo/auladid/yredelep/|404/24s/2402-J04

(suonesadQ s1woly
J91UN0) YdH) SIuawaJdul s191unod wJiogad 01 YdH Ag pash sjjed jo 1as e

y-suonesado/oiwole/wiopne|d/suladid/yredelep/|joa/24s/2103-|404

(uonesado 3007 YdH) suonesado uoisn|oxa
[eninw wJoad 01 YdH Ag pasn s||ed Jo 3as e

y»jo0|/waope|d/auladid/yredelep/|404/24s/2402-J04

(auswaSeuew Asows|A YdH) (erow o
Adod 1) suonesado Alowsw J3ylo Se [|om Se ‘uonedojesp/uonedo|e
Aowsw sjweuAp waoyiad oy Aseaqi| Aq pasn s||ed jJo 1as e

y-Aowsw/wiopne|d/suijadid/yiederep/|joi/ais/2103-|j04

(suonesadQ 1332ed VdH)
suoppuny duissadoud 1axded auljadid

y-1oyoed/wiope|d/suljadid/yredelep/|Jo.a/24s/2102-404

uonduasaqg

3|14 JopesH

ALIEN (Grant Agr. No. 317880)

Project:

D2.3

Deliverable Number:

Date of Issue:

12/06/2014

	Excecutive Summary
	Introduction
	HAL Architecture Overview
	Cross-Hardware Platform Layer
	Hardware Specific Layer

	Software Development in ALIEN
	Deliverable Outline

	Cross-Hardware Platform Layer Implementation
	ROFL
	OpenFlow Endpoints
	OpenFlow Pipeline

	xDPd
	Control and Management Module
	Plug-in Manager
	Slicer

	APIs
	NETCONF
	Abstract Forwarding API
	Hardware Pipeline API

	Hardware-Specific Layer Implementation
	Packet Switching Devices
	X86-based Packet Processing Devices
	Programmable Network Processors

	Lightpath Devices
	Point-to-MultiPoint Networks
	DOCSIS Access Network
	GEPON Access Network

	Resource Reservation and Virtualization
	Optical Resource Reservation and Control
	Resource Virtualization
	Resource Description
	Resources in Programmable Packet Switching Devices
	Resources in Lightpath Devices
	Resources in Point-to-Multipoint Devices

	Summary
	References
	Acronyms
	Appendix A

