
DRAFT
AbstracƟon Layer for ImplementaƟon of Extensions in programmableNetworks

CollaboraƟve project co-funded by the European Commission within the Seventh Framework Programme

Grant agreement no: 317880
Project acronym: ALIEN
Project full Ɵtle: "AbstracƟon Layer for ImplementaƟon of Extensions in programmable Networks"
Project start date: 01/10/12
Project duraƟon: 24 months

Deliverable D3.3: Final Prototypes of Hardware Specific Parts

Due date: 31/06/2014
Submission date: 25/07/2014
Editor: Damian Parniewicz (PSNC)
Internal reviewer: Bartosz Belter (PSNC)
Author list: Damian Parniewicz, Łukasz Ogrodowczyk (PSNC), Victor Fuentes, Eduardo Jacob

(EHU/IPV), Marek Michalski (PUT), Richard Clegg (UCL), Umar Toseef, Kostas
PenƟkousis (EICT), Marc Sune, Hagen Woesner, Tobias Jungel (BISDN), Tasos
Vlachogiannis (UNIVBRIS)

DisseminaƟon level

X� PU: Public
� PP: Restricted to other programme parƟcipants (including the Commission Services)
� RE: Restricted to a group specified by the consorƟum (including the Commission Services)
� CO: ConfidenƟal, only for members of the consorƟum (including the Commission Services)

©Authors and their corresponding insƟtuƟons License: CC-BY-NC hƩp://creaƟvecommons.org/licenses/by-nc/4.0/legalcode
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage and that copies bear this noƟce and the
full citaƟon on the first page.

DRAFT

Final Prototypes of Hardware-Specific Parts

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 2

DRAFT

Table of Contents
Abstract 7

ExcecuƟve Summary 8

1 IntroducƟon 9

2 HSP Prototypes 10
2.1 HSP for EZappliance . 10

2.1.1 Overview . 10
2.1.2 Supported funcƟonaliƟes . 11
2.1.3 Requirements, installaƟon and configuraƟon . 13
2.1.4 Licenses and links . 17

2.2 HSP for NetFPGA . 17
2.2.1 Overview . 17
2.2.2 Supported funcƟonaliƟes . 18
2.2.3 Requirements, installaƟon and configuraƟon . 18
2.2.4 Licenses and links . 21

2.3 HSP for Cavium Octeon . 21
2.3.1 Overview . 21
2.3.2 Supported funcƟonaliƟes . 22
2.3.3 Requirements, installaƟon and configuraƟon . 24
2.3.4 Licenses and links . 24

2.4 HSP for DOCSIS . 24
2.4.1 Overview . 24
2.4.2 Supported funcƟonaliƟes . 24
2.4.3 Requirements, installaƟon and configuraƟon . 26
2.4.4 Licenses and links . 28

2.5 HSP for GEPON . 28
2.5.1 Overview . 28
2.5.2 Supported funcƟonaliƟes . 29
2.5.3 Requirements, installaƟon and configuraƟon . 30
2.5.4 Licenses and links . 32

2.6 HSP for L0 switch . 33
2.6.1 Overview . 33
2.6.2 Supported funcƟonaliƟes . 33
2.6.3 Requirements, installaƟon and configuraƟon . 36
2.6.4 Licenses and links . 37

3 Lessons Learned 38
3.1 EZappliance HSP . 38
3.2 NetFPGA HSP . 38
3.3 DOCSIS HSP . 39
3.4 GEPON HSP . 39
3.5 L0 switch HSP . 40

4 xDPd/ROFL Improvements for ALIEN HSPs 41

5 Conclusions 42

3

DRAFT

Final Prototypes of Hardware-Specific Parts

References 44

Acronyms 45

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 4

DRAFT

List of Figures
Figure 1.1 Links to HSPs soŌware packages . 9
Figure 2.1 EZappliance HSP main components . 11
Figure 2.2 Recommended environments for EZappliance HSP components 14
Figure 2.3 NetFPGA HSP general components . 18
Figure 2.4 ImplementaƟon of HAL on the OCTEON Plaƞorm. 22
Figure 2.5 DOCSIS ALIEN-HAL based architecture . 25
Figure 2.6 DOCSIS virtual switch model . 25
Figure 2.7 ALHINP port mapping . 28
Figure 2.8 AggregaƟon switch port mapping . 28
Figure 2.9 OUI port mapping . 29
Figure 2.10 GEPON HSP general components . 29
Figure 2.11 ADVA ROADM ROFL based datapath . 33
Figure 2.12 Wireshark capture of iniƟal communicaƟon and circuit port cross-connecƟon 34
Figure 2.13 OpenFlow agent console startup and messages exchanged . 35
Figure 5.1 Usage of xDPd and ROFL . 42
Figure 5.2 HSP implementaƟon approaches (b) and (c) in the context of HAL architecture (a) 43
Figure 5.3 Development of HSP prototypes - summary . 43

5

DRAFT

List of Tables
Table 2.1 SoŌware repository links . 17
Table 2.2 SoŌware repository links . 21
Table 2.3 License Table. 24
Table 2.4 SoŌware repository links . 28
Table 2.5 SoŌware repository links . 32
Table 2.6 SoŌware repository links . 37

6

DRAFT

Final Prototypes of Hardware-Specific Parts

Abstract
This document provides the release notes for the Hardware Specific Parts (HSPs) enabling an OpenFlow 1.x control over a set
of heterogeneous network plaƞorms (i.e.: EZappliance, NetFPGA, DOCSIS, GEPON, ATCA with Cavium Octeon card and Dell
Force10 Split Data Plane switch). The HSPs have been developed in a form of the hardware drivers for Hardware AbstracƟon
Layer [9] soŌware frameworks (see [6] and [4]). The HSP implementaƟon has been made accordingly to the iniƟal soŌware
design of hardware drivers provided in the project deliverable [8] as well as the high-level funcƟonal Hardware AbstracƟon
Layer (HAL) presented in the project deliverable [9].

This document stands as a part of D3.3/MS11 that includes the following components:

• Hardware Specific Part prototypes for all hardware plaƞorm available in the consorƟum, delivered as a set of source
codes and/or binaries.

• Release Notes providing HSPs descripƟon, lists of supported funcƟonality, installaƟon and configuraƟon guidelines
(this document).

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 7

DRAFT

Final Prototypes of Hardware-Specific Parts

ExcecuƟve Summary
The ALIEN deliverable D3.3 is officially finishing Task 3.3 (''Hardware specific implementaƟon and validaƟon'') in WP3 and
thus finishing the WP3 acƟvity as a whole.

The main goal of the HSPs development process was to provide an input for the HAL design performed in Task 2.2
(''Design and funcƟonal definiƟon of Hardware AbstracƟon Layer'') and to validate the HAL framework implementaƟon
provided by Task 2.3 (''ImplementaƟon of the common part of the OpenFlow datapath element'').

Each HSP prototype has been developed and validated by disjoint teams, owning a specific plaƞorm instance in their
local testbeds:

• EZappliance HSP –PSNC

• DOCSIS HSP –UPV/EHU

• GEPON HSP –UCL

• L0 switch –UNIVBRIS

• NetFPGA HSP –PUT

• Cavium Octeon HSP (covering ATCA plaƞorm and Force10 switch) –BISDN

The iniƟal HSP validaƟon has been performed with the usage of the OFtest tesƟng tool which provides quite detailed
analysis of implemented OpenFlow features, both at the control- and data- plane levels. The tests results have been included
to this document as a subsecƟon of SecƟon 2. AddiƟonally, the EZappliance and DOCSIS developments have been validated
during live demonstraƟons supported by WP3 teams and presented during the FIA2014 [2] and TNC2014 [5] internaƟonal
conferences. The demonstraƟon efforts have been summarized in a poster arƟcle submiƩed and accepted to EWSDN2014
and TNC2014 [10][11].

Further validaƟon of the HSP prototypes will be carried out in WP5, aŌer a successful integraƟon with the OFELIA Control
Framework elements (supported by WP4) and integraƟon with OpenFlow controllers as idenƟfied in WP5 experiments.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 8

DRAFT

Final Prototypes of Hardware-Specific Parts

1 IntroducƟon
The concept of the HAL, a key enabler for an implementaƟon of OpenFlow on alien devices, has been introduced in the
ALIEN project and successfully disseminated to the Future Internet communiƟes clustered around SDN. The HAL, since now
materialized with well-tested proof-of-concept implementaƟons, is available for several plaƞorms, idenƟfied in the project
as main targets of soŌware development acƟviƟes.

This deliverable provides the release notes of the Hardware Specific Parts (HSPs) enabling OpenFlow 1.x control over a
set of heterogeneous network plaƞorms (i.e.: EZappliance, NetFPGA, DOCSIS, GEPON, ATCA with Cavium Octeon card and
Dell Force10 Split Data Plane switch). The document summarizes development efforts towards hardware-specific parts of
the HAL and provides a good overview of OF-based funcƟonality currently supported by each plaƞorm.

All results of soŌware development acƟviƟes in ALIEN are accessible from a single web page http://www.fp7-alien.
eu/?page_id=607, which summarizes pracƟcal outcomes of the project. AddiƟonally, all ALIEN's HSP prototypes are pub-
licly available at the ALIEN's github account, as presented in the table below. The only excepƟon is the Octeon HSP proto-
type, which has been developed with a proprietary license due to the Non-disclosure Agreement signed by BISDN with an
external company -- Cavium. Accessing the Octeon HSP source code and binaries are the subject of a bilateral agreement
with BISDN upon a specific request of an interested third party. Similarly, the EZappliance HPS parts (Hardware Datapath
and EZ Proxy) are covered by Non-disclosure Agreement signed by PSNC with EZchip.

Figure 1.1: Links to HSPs soŌware packages

The remainder of this deliverable is organized as follows. SecƟon 2 presents details of Hardware Specific Part (HSP)
soŌware packages developed for each ALIEN plaƞorm. SecƟon 3 details lessons learnt and experiences gathered during
the implementaƟon phase related to porƟng xDPd/ROFL to ALIEN plaƞorms. SecƟon 4 presents major improvements and
advances made to ROFL and xDPd within ALIEN, as a result of a deep usage of these packages in the project. Finally, SecƟon
5 summarizes and concludes the deliverable.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 9

http://www.fp7-alien.eu/?page_id=607
http://www.fp7-alien.eu/?page_id=607

DRAFT

Final Prototypes of Hardware-Specific Parts

2 HSP Prototypes
This secƟon presents developed Hardware Specific Part (HSP) soŌware packages for each ALIEN plaƞorm. The descripƟon
of each HSP presents soŌware components developed by the ALIEN teams and soŌware locaƟon in the context of the
hardware plaƞorm. In order to reflect that HSP implementaƟon are done accordingly ALIEN HAL architecture [D2.2], the
HSP overview pictures contain also posiƟon of HAL layers, HAL interfaces and most important funcƟonal blocks already
presented in deliverable [D3.2].

Each HSP secƟon contains informaƟon what exact funcƟonality is provided by HSP complemented with OFtest tool [1]
results which precisely validated both data plane and control plane funcƟonaliƟes of each HSP prototype.

The very important part of HSP descripƟon is a list of requirements and user manuals presenƟng installaƟon and con-
figuraƟon procedures which can be used by anyone interested in tesƟng or usage of ALIEN project developments.

The descripƟon of HSP is finished with a table containing informaƟon about licensing, form (source code or binary) and
links to HSP soŌware packages.

2.1 HSP for EZappliance
2.1.1 Overview

The HAL Hardware Specific Part for EZappliance plaƞorm is implemented as a set of three soŌware packages (see Figure
2.1):

• xDPd for EZappliance

• EZ Proxy

• Hardware Datapath.

HSP for EZappliance was developed by Poznan SupercompuƟng and Networking Center (PSNC).

2.1.1.1 xDPd for EZappliance The xDPd project [6] is a soŌware framework for instanƟaƟng plaƞorm specific com-
ponents and is capable of tasks scheduling both for hardware agnosƟc and hardware driver work flows. Within xDPd frame-
work, we have implemented the hardware driver for EZappliance device. The EZappliance driver uses IPC Corba interface to
discover Data Plane interfaces and control Hardware Datapath located in EZchip NP-3 processor. The driver also creates a
TCP connecƟon to EZ Proxy which is used for OpenFlow packet-in and packet-out funcƟonality. AddiƟonally, The hardware
driver for EZappliance includes also OpenFlow soŌware pipeline from the ROFL library, which perform role of slow rule
cache and complements funcƟonal limitaƟons of the Hardware Datapath component. All flow entries, which are supported
by Hardware Datapath, are passed to NP-3 processor (more sophisƟcated rule caching algorithms like [12] are currently
not implemented). However, the ROFL soŌware pipeline contains all flow entries and is applying OpenFlow matching on
packets which were not matched in Hardware Pipeline. All EZappliance HSP soŌware modules have been implemented in
C++ language.

2.1.1.2 EZ Proxy EZ Proxy is a wrapper around EZchip EZdriver library. EZ Proxy simplifies EZchip vendor C++ library
API, hiding the complexity of NP-3 network processor controlling and exposes the required funcƟonality by IPC Corba tech-
nology [3]. EZ Proxy offers direct access to search structures and staƟsƟc counters located in NP-3 memory, allows for TOP
MicroPrograms deploying inside NP-3 and controlling MicroPrograms behavior. API allows also for bidirecƟonal frame trans-
mission between Control CPU and NP-3, and for iniƟal configuraƟon of network processor and its memories. EZ Proxy has
been developed in C++ language.

2.1.1.3 Hardware Datapath Hardware Datapath is an OpenFlow pipeline implementaƟon for NP-3 network pro-
cessor. It is processing frames with a full speed of the network processor. Hardware Datapath is implemented as a set of
TOP MicroPrograms using EZchip assembler language. In Hardware Datapath, the OpenFlow pipeline is implemented di-
rectly using one search structure dedicated for all flow tables and second search structure dedicated for mapping of output

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 10

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.1: EZappliance HSP main components

ports into physical resources (queues in NP-3 Traffic Manager). The flow tables are stored in TCAM memory supporƟng
wildcard matching which imposes limitaƟons for amount of supported header fields. The packets which were not matched
successfully in Hardware Datapath are sent to EZappliance hardware driver instance in xDPd framework.

2.1.2 Supported funcƟonaliƟes

The main influence to the list of EZappliance HSP supported funcƟonaliƟes has Hardware Pipeline component implemented
for NP-3 network processor. Currently EZappliance supports:

• OpenFlow version 1.0 and 1.2 in terms of communicaƟon protocol (not data plane funcƟonality)

• Part of OpenFlow 1.0 data plane funcƟonaliƟes:

– One flow table

– Ethernet, VLAN, IPv4, ICMP and ARP matches

– Single port packet forwarding and drop acƟons

– Packet-in and Packet-out

The more detailed informaƟon about supported funcƟonaliƟes are presented as OFtest tool [1] results performed with
usage of OpenFlow 1.0:

Basic protocol behaviour:

sh# alien@alien:~/oftest$ sudo ./oft basic -p 6633 -i 15@eth7 -i 16@eth6 -i 17@eth5
basic.EchoWithData ... ok

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 11

DRAFT

Final Prototypes of Hardware-Specific Parts

basic.PacketInBroadcastCheck ... ok
basic.DescStatsGet ... ok
basic.PacketOutMC ... ok
basic.PacketOut ... ok
basic.PortConfigModErr ... ok
basic.Echo ... ok
basic.PortConfigMod ... ok
basic.FlowMod ... ok
basic.TableStatsGet ... ok
basic.BadMessage ... ok
basic.FlowStatsGet ... ok
basic.PacketIn ... ok

Supported protocols fields matching:

sh# alien@alien:~/oftest$ sudo ./oft flow_matches -p 6633 -i 15@eth7 -i 16@eth6 -i 17@eth5
flow_matches.UdpDstPort ... ok
flow_matches.IpTos ... FAIL (*)
flow_matches.WildcardMatchPrio ... FAIL (*)
flow_matches.EthernetDstAddress ... ok
flow_matches.UdpSrcPort ... ok
flow_matches.ExactMatch ... FAIL (*)
flow_matches.ICMPCode ... FAIL (*)
flow_matches.MultipleHeaderFieldL2 ... ok
flow_matches.MultipleHeaderFieldL4 ... FAIL (*)
flow_matches.VlanPCP ... ok
flow_matches.EthernetSrcAddress ... ok
flow_matches.AllWildcardMatch ... FAIL (*)
flow_matches.ICMPType ... FAIL (*)
flow_matches.IngressPort ... FAIL (*)
flow_matches.TcpSrcPort ... ok
flow_matches.TcpDstPort ... ok
flow_matches.ArpOpcode ... FAIL (*)
flow_matches.ExactMatchPrio ... ok
flow_matches.ArpTargetIP ... ok
flow_matches.ArpSenderIP ... ok
flow_matches.VlanId ... ok
flow_matches.IpProtocol ... ok
flow_matches.EthernetType ... ok

Supported flow entry acƟons:

sh# alien@alien:~/oftest$ sudo ./oft actions -p 6633 -i 15@eth7 -i 16@eth6 -i 17@eth5
actions.ModifyL4Dst ... FAIL (*)
actions.Announcement ... ok

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 12

DRAFT

Final Prototypes of Hardware-Specific Parts

actions.NoAction ... ok
actions.AddVlanTag ... FAIL (*)
actions.ModifyL2Src ... FAIL (*)
actions.ModifyTos ... FAIL (*)
actions.ForwardLocal ... ok
actions.ForwardAll ... FAIL (*)
actions.ModifyL4Src ... FAIL (*)
actions.ForwardTable ... FAIL (*)
actions.ForwardController ... FAIL (*)
actions.ModifyL2Dst ... FAIL (*)
actions.ForwardInport ... FAIL (*)
actions.ModifyL3Dst ... FAIL (*)
actions.ForwardFlood ... FAIL (*)
actions.VlanPrio2 ... FAIL (*)
actions.VlanPrio1 ... FAIL (*)
actions.ModifyL3Src ... FAIL (*)
actions.ModifyVlanTag ... FAIL (*)

(∗) A feature having lower implementaƟon priority because not required by any demonstraƟons; pending to be imple-
mented;

2.1.3 Requirements, installaƟon and configuraƟon

The general overview of soŌware packages and main environmental requirements are show in Figure 2.2. More info about
each soŌware package can be found in the following subsecƟons.

2.1.3.1 xDPd for EZappliance The xDPd for EZappliance soŌware must be run on modern standard CPU system. It
is recommended to deploy it on x86 processor with Linux operaƟng system (i.e. Ubuntu). It is not recommended to deploy
xDPd for EZappliance over Freescale PowerPC MPC8543 present in EZappliance device, where it performs the role of Control
CPU, because of its limited capabiliƟes. MPC8543 is not capable of performing OpenFlow soŌware pipeline processing.

Library requirements
The xDPd for EZappliance soŌware requires all standard libraries foreseen by [6] and [4] soŌware projects and ROFL

library in version devel-0.4:

https://github.com/bisdn/rofl-core/tree/devel-0.4

AddiƟonally, it is required to install omniORB implementaƟon [omniORB] of the CORBA protocol as a set of the following
soŌware packages for Debian systems:

omniorb >= 4.1.x
omniidl >= 4.1.x
python-omniorb >= 3.x
omniidl-python >= 3.x

InstallaƟon
Note: Check always https://github.com/fp7-alien/xDPd-for-EZappliance for the newest installaƟon and

configuraƟon guidelines.
First clone project from github.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 13

https://github.com/fp7-alien/xDPd-for-EZappliance

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.2: Recommended environments for EZappliance HSP components

sh# git clone git://github.com/fp7-alien/xDPd-for-EZappliance

Then you can build the project.

sh# cd ./xDPd-for-EZappliance
sh# ./autogen.sh

At the end, it is specified that xDPd must be built and compiled with EZappliance plaƞorm driver.

sh# cd build
sh# ../configure -with-hw-support=ezappliance
sh# make

ConfiguraƟon
Copy the example configuraƟon file and edit it:

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 14

DRAFT

Final Prototypes of Hardware-Specific Parts

sh# cd build/src/xdpd
sh# cp src/xdpd/management/plugins/config/example.cfg .
sh# vi src/xdpd/management/plugins/config/example.cfg

In the config file you must set required OpenFlow protocol version (1.0 or 1.2), number of tables equal 1, list of ports
(from 'eth0' to 'eth23') and IP address of EZ Proxy module as the driver-extra-params aƩribute:

config:{
openflow:{

logical-switches:{
#Name of the switch dp0
dp0:{

#Most complex configuration
dpid = "0x1100000000000001"; #Must be hexadecimal
version = 1.0;
description="This is an PSNC-EZappliance switch";
#Controller
controller-connections:{

main:{
remote-hostname="10.134.0.15";
remote-port=6633;

};
};
reconnect-time=1; #seconds
#Tables and MA
num-of-tables=1;
#Physical ports attached to this logical switch (mandatory)
#The order and position in the array dictates the number of
ports = ("eth0", "eth1", "eth2", "eth3", "eth4","eth5","eth6",

"eth7","eth8","eth9","eth10");
};

};
};
system:{

driver-extra-params="10.134.0.4"; #EZ Proxy IP address
};

};

How to run it
Before starƟng xdpd, you need to guarantee that proper CORBA ior files, created by EZ Proxy, are available for xdpd in

/tmp/ior folder.

/tmp/ior/EZapi_struct.ior
/tmp/ior/EZapi_monitor.ior

Then just run xdpd.

sh# cd build/src/xdpd
sh# ./xdpd -c example.cfg

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 15

DRAFT

Final Prototypes of Hardware-Specific Parts

2.1.3.2 EZ Proxy and Hardware Datapath EZ Proxy is hosted on EZappliance Power PC embedded Linux where
EZchip libraries are installed and direct access to EZppliance PCI interface is provided.

EZ Proxy compilaƟon
For the compilaƟon process the proprietary EZChip development environment is necessary. Final compiled program

during run Ɵme on Control CPU loads dedicated MicroPrograms into TOP cores, sets up the whole environment (cre-
ate channel, run driver) and runs EZ Proxy API. AŌer successful compilaƟon the new created binary can be found here:
/home/alien/HAL/EZproxy/run

How to mount EZproxy to the EZappliance
EZ Proxy is accessible from EZappliance Control CPU through the samba soŌware and smb/cifs protocol. To mount the

VM with EZproxy to the Control CPU system:
Login as a root to EZappliance (IP address of the Control CPU board) and check that /etc/profile file contains:

sh# export LD_LIBRARY_PATH=/mnt/ezsamba/HAL/EZproxy/cross-compile/omniorb-cross-sx/lib:
/mnt/ezsamba/HAL/EZproxy/cross-compile/lib

sh# export PATH=$PATH:/mnt/ezsamba/HAL/EZproxy/cross-compile/omniorb-cross-sx/bin
sh# export LIBS=$LIBS:/mnt/ezsamba/HAL/EZproxy/cross-compile/lib

Then run the script:

sh# cd /home/user1
sh# ./ezsamba_alien.sh

How to run microcode for TOPs and EZproxy
ALIEN EZ Proxy executable binary should be run from Control CPU system. EZ Proxy uses proprietary shared object

libraries from EZChip company. That's why Control CPU must be connected through SAMBA with addiƟonal Virtual Machine
with EZChip libraries. EZ Proxy is accessible from EZappliance Control CPU through directory: /mnt/ezsamba.

EZ Proxy can be run in normal or in debug mode. Debug mode is needed for debugging TOP processors using MDE
(EZChip MicroCode Development Environment). It can be configured in the file located at

/mnt/ezsamba/HAL/EZproxy/run/AHE_MODE_INI

Normal mode configuraƟon (AHE_MODE_INI file)

REAL
MCODE_HOST
CHAN_CRT_HOST
FRAMES_FROM_HOST_ALSO
MULTI_ENGINE

Debug mode configuraƟon (AHE_MODE_INI file)

REAL
MCODE_MDE
CHAN_CRT_HOST
FRAMES_FROM_HOST_ALSO
SINGLE_ENGINE

All event are logged to EZproxy.log file in /mnt/ezsamba/HAL/EZproxy/run/

How to run EZ Proxy:
Login as a root to EZappliance (IP address of the Control CPU board)

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 16

DRAFT

Final Prototypes of Hardware-Specific Parts

sh# cd /mnt/ezsamba/HAL/EZproxy/run
sh# ./ALIEN

How to run EZ Proxy in debug mode (trace informaƟon mode):
Login as a root to EZappliance (IP address of the Control CPU board)

sh# cd /mnt/ezsamba/HAL/EZproxy/run
sh# ./ALIEN d

When binary file is executed it performs the following tasks:

• load microcode into NP-3 TOP cores,

• iniƟalize the whole environment to work

– create channel

– create CORBA interfaces and related ior files:

* /mnt/ezsamba/HAL/EZproxy/iors/EZapi_struct.ior – ior for manipulaƟon of search entries in NP-3

* /mnt/ezsamba/HAL/EZproxy/iors/EZapi_monitor.ior – ior for gathering informaƟon about data plane
ports of EZappliance

* /mnt/ezsamba/HAL/EZproxy/iors/EZapi_tm.ior – ior for NP-3 Traffic Managers as well as Tocken Bucket
mechanism management

– create TCP listening socket for network frames exchange between Hardware Datapath and xDPd driver for
EZappliance.

2.1.4 Licenses and links

EZappliance HSP package Licence Link
xDPd for EZappliance Mozilla Public Licence 2.0 (source code) https:

//github.com/fp7-alien/
xDPd-for-EZappliance/tree/
master/src/xdpd/drivers/
ezappliance

EZ Proxy + Hardware Datapath Proprietary (binary file) https:
//github.com/fp7-alien/
xDPd-for-EZappliance/tree/
master/src/xdpd/drivers/
ezappliance/EZproxy-binary

Table 2.1: SoŌware repository links

2.2 HSP for NetFPGA
2.2.1 Overview

The general overview of HAL Hardware Specific Part for NetFPGA cards with OpenFlow and xDPd is shown in the Figure 2.3.
In this case, the hardware and soŌware parts have to be in the same machine because they communicate via PCI bus (see
Figure 2.3). It is possible to install and properly maintain more than one NetFPGA cards in the same PC (even different
versions, i.e. with interfaces with speed of 1Gbps and 10Gbps), but some operaƟons (menƟoned in details later in this
secƟon) have to be realized carefully and with awareness of the consequences. To run whole system both, soŌware and
hardware need to be installed properly. The prototype of OpenFlow switch based on NetFPGA and xDPd has been developed
within ALIEN project.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 17

https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance/EZproxy-binary
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance/EZproxy-binary
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance/EZproxy-binary
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance/EZproxy-binary
https://github.com/fp7-alien/xDPd-for-EZappliance/tree/master/src/xdpd/drivers/ezappliance/EZproxy-binary

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.3: NetFPGA HSP general components

2.2.2 Supported funcƟonaliƟes

The final release of Openflow switch based on neƞpga cards will support full funcƟonality of OpenFlow 1.0 and some ele-
ments of higher versions using xDPd. Most of them will be realized in hardware part, only few will be masked by soŌware
pipelilne realized by ROFL. In this moment prototype can realize: Typical for OpenFlow PackeIn and PacketOut, packet for-
warding and dropping acƟons, field matching (Ethernet MAC addresses, IP addresses) Gathering staƟsƟcs and flow table
lisƟng. In details, example of oŌest report is shown below:

./oft basic -p 6633 -i 1@eth0 -i 2@eth1 -i 3@eth2 -i 4@eth3
basic.EchoWithData ... ok
basic.PacketInBroadcastCheck ... ok
basic.DescStatsGet ... ok
basic.PacketOutMC ... ok
basic.PacketOut ... ok
basic.PortConfigModErr ... ok
basic.Echo ... ok
basic.PortConfigMod ... ok
basic.FlowMod ... ok
basic.TableStatsGet ... ok
basic.BadMessage ... ok
basic.FlowStatsGet ... ok
basic.PacketIn ... ok

2.2.3 Requirements, installaƟon and configuraƟon

According to our experience and official informaƟon, dedicated and fully supported operaƟng system for NetFPGA 1G card
is Fedora 14. It is possible to install neƞpga driver on other systems, but it requires some tricks and does not guarantee fully
correct operaƟon.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 18

DRAFT

Final Prototypes of Hardware-Specific Parts

InstallaƟon of NetFPGA cards
Here we will present only commands with minimal explanaƟon of their meaning (only if this is needed, in most of the

cases commands are self-defined). You will need root privileges to perform driver installaƟon and grub.conf modificaƟon
by user_account_setup.pl script. Please note that some addiƟonal packages may be required as a part of this process.

Install clean Fedora 14
yum update -y
yum install kernel-devel, kernel-headers
reboot

wget http://netfpga.org/yum/el5/RPMS/noarch/netfpga-repo-1-1_CentOS5.noarch.rpm
rpm -ivh netfpga-repo-1-1_CentOS5.noarch.rpm
(or)
rpm -Uhv http://netfpga.org/yum/el5/RPMS/noarch/netfpga-repo-1-1_CentOS5.noarch.rpm

yum install netfpga-base

cd ~
sudo /usr/local/netfpga/lib/scripts/user_account_setup/user_account_setup.pl
cd ~/netfpga
sudo make
sudo make install
reboot

AŌer reboot you should see something as an output of command: (loaded driver nf2.ko)

lsmod | grep nf

Command ifconfig should show nf2c0, nf2c1, nf2c2 and nf2c3 interfaces for first NetFPGA card. If you have mulƟple
cards in one machine, you will see next 4 interfaces with names nf2c{4xN+0} nf2c{4xN+1} nf2c{4xN+2} nf2c{4xN+3} for each
NetFPGA card.

SoŌware tools should be available:

nf_info
nf_download

nf_info [-I nf2c{4N}] allows to check actual state of neƞpga card (with number N if you have more than one in one
machine)

nf_download project.bit [-I nf2c{4N}] allows to download bit file to FPGA chip of NetFPGA (with number N)card. It starts
running immediately aŌer downloading.

InstallaƟon of OpenFlow.bit in NetFPGA cards
There are several acceptable biƞiles for OpenFlow. You can use demo or synthesize your own. To prepare own biƞile

you will need IDE and source code, which requires several licenses (see secƟon License) and experience in its configuraƟon.
To make whole process easier, we suggest to use public OpenFlow demo implementaƟon for netFPGA cards. To download
and install it use following commands:

sudo yum install netfpga-openflow_switch
/usr/local/netfpga/lib/scripts/user_account_setup/user_account_setup.pl

Example of command for downloading openflow project to hardware FPGA chip on NetFPGA card where at least 3 of
them are in the same machine:

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 19

DRAFT

Final Prototypes of Hardware-Specific Parts

nf_download ~/netfpga/bitfiles/openflow.bit -i nf2c8

InstallaƟon of xDPd for NetFPGA cards
1. ROFL library: xDPd require ROFL-core library to be installed in path available for xDPd execuƟve binary. All required

informaƟon in this regard is accessible at ROFL website [4]. Here we put only commands which should download, compile
and install library considering an opƟmisƟc case.

git clone https://github.com/bisdn/rofl-core
cd rofl-core
git checkout devel-0.3
sh autogen.sh
cd build
../configure
make
sudo make install

2. xDPd source andbinary: You can download xDPd for netFPGA cards from several online locaƟons. However, you must
be careful as few locaƟons host xDPd soŌware for two different versions of NetFPGA cards (NetFPGA1G and NetFPGA10G)
which are not compaƟble with each other.

git clone git://github.com/fp7-alien/xDPd-for-netfpga1g
cd xDPd-for-netfpga1g
sh autogen.sh
cd build
../configure -with-hw-support=netfpga1g
make

AŌer this you will obtain executable binary file in build/src/xdpd. To run xDPd, it needs config file which provide infor-
maƟon about current hardware machine configuraƟon and parameters of controller. An example configuraƟon is presented
below:

config:{
openflow:{

logical-switches:{
#Name of the switch dp0
dp0:{

#Most complex configuration
dpid = "0x004E463243FF"; #Must be hexadecimal
version = 1.0;
description="NetFPGA1G-xDPd-OpenFlow-sw";
#Controller
controller-connections:{

main:{
remote-hostname="7.7.7.6";
remote-port=6633;

};
};
reconnect-time=1; #seconds
#Tables and MA

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 20

DRAFT

Final Prototypes of Hardware-Specific Parts

num-of-tables=1;
#Physical ports attached to this logical switch (mandatory).
#The order and position in the array dictates the number of
ports = ("nf2c0", " nf2c1", " nf2c2", " nf2c3");

};
};

};
system:{
};

};

Important noƟce: It is possible to maintain more than one NetFPGA card with xDPd and OpenFlow in the same machine,
but each of them should have its own instance of xDPd for NetFPGA card, because it represents one hardware switch, but
two neƞpga cards are not one switch -- there is no connecƟon in hardware between ports from different cards.

Editorial comment: Above sentences need revision to convey the clear meaning.

ConfiguraƟon file for next NetFPGA card should have different interfaces:

ports = ("nf2c4", " nf2c5", " nf2c6", " nf2c7");

and datapath ID:

dpid = "0x024E463243FF";

Important noƟce: When you use more than one neƞpga cards in different machines, be careful with their MAC ad-
dresses. By default, each neƞpga interface with name nf2c{0xHH} has MAC address equal to 004E463243HH.

When you have everything installed and prepared config you can start xDPd:

cd build/src/xdpd
./xdpd -c config_xdpd_for_netfpga.cfg

2.2.4 Licenses and links

NetFPGA HSP package Licence Link
OpenFlow-NetFPGA-1.0.0 reference
switch

Proprietary (source code) https://github.
com/NetFPGA/netfpga/wiki/
OpenFlowNetFPGA100

xDPd for NetFPGA Proprietary (source code) https:
//github.com/fp7-alien/
xDPd-for-netfpga1g

Table 2.2: SoŌware repository links

2.3 HSP for Cavium Octeon
2.3.1 Overview

The HSP for the Octeon plaƞorm is realized as a driver to xDPd and therefore implemenƟng the AFA interface. The OF
endpoint is running in the Linux core environment of the Octeon and accessing the HSP through the AFA interface (see
Figure 2.4). The pipeline shown in the Linux part is used for Packet out requests and state keeping of all FlowMods. A new
FlowMod in the Linux core is stored in a shared memory, that is accessible from all Standalone cores. The pipeline running

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 21

https://github.com/NetFPGA/netfpga/wiki/OpenFlowNetFPGA100
https://github.com/NetFPGA/netfpga/wiki/OpenFlowNetFPGA100
https://github.com/NetFPGA/netfpga/wiki/OpenFlowNetFPGA100
https://github.com/fp7-alien/xDPd-for-netfpga1g
https://github.com/fp7-alien/xDPd-for-netfpga1g
https://github.com/fp7-alien/xDPd-for-netfpga1g

DRAFT

Final Prototypes of Hardware-Specific Parts

in each core of the Octeon is able to apply the OpenFlow rules wriƩen into that memory.

Figure 2.4: ImplementaƟon of HAL on the OCTEON Plaƞorm.

2.3.2 Supported funcƟonaliƟes

OFTest basic results:

./oft basic
basic.EchoWithData ... ok
basic.PacketInBroadcastCheck ... ok
basic.DescStatsGet ... ok
basic.PacketOutMC ... ok
basic.PacketOut ... ok
basic.PortConfigModErr ... ok
basic.Echo ... ok
basic.PortConfigMod ... ok
basic.FlowMod ... ok
basic.TableStatsGet ... ok
basic.BadMessage ... ok
basic.FlowStatsGet ... ok
basic.PacketIn ... ok

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 22

DRAFT

Final Prototypes of Hardware-Specific Parts

OFTest fields matching results:

./oft flow_matches
flow_matches.UdpDstPort ... ok
flow_matches.IpTos ... ok
flow_matches.WildcardMatchPrio ... ok
flow_matches.EthernetDstAddress ... ok
flow_matches.UdpSrcPort ... ok
flow_matches.ExactMatch ... ok
flow_matches.ICMPCode ... ok
flow_matches.MultipleHeaderFieldL2 ... ok
flow_matches.MultipleHeaderFieldL4 ... ok
flow_matches.VlanPCP ... ok
flow_matches.EthernetSrcAddress ... ok
flow_matches.AllWildcardMatch ... ok
flow_matches.ICMPType ... ok
flow_matches.IngressPort ... ok
flow_matches.TcpSrcPort ... ok
flow_matches.TcpDstPort ... ok
flow_matches.ArpOpcode ... ok
flow_matches.ExactMatchPrio ... ok
flow_matches.ArpTargetIP ... ok
flow_matches.ArpSenderIP ... ok
flow_matches.VlanId ... ok
flow_matches.IpProtocol ... ok
flow_matches.EthernetType ... ok

OFTest flow entry acƟons results:

./oft actions
actions.ModifyL4Dst ... ok
actions.Announcement ... ok
actions.NoAction ... ok
actions.AddVlanTag ... ok
actions.ModifyL2Src ... ok
actions.ModifyTos ... ok
actions.ForwardLocal ... ok
actions.ForwardAll ... ok
actions.ModifyL4Src ... ok
actions.ForwardTable ... FAIL (*)
actions.ForwardController ... ok
actions.ModifyL2Dst ... ok
actions.ForwardInport ... ok
actions.ModifyL3Dst ... ok
actions.ForwardFlood ... ok
actions.VlanPrio2 ... ok
actions.VlanPrio1 ... ok
actions.ModifyL3Src ... ok
actions.ModifyVlanTag ... ok

(∗) By design ROFL-pipeline forbids the usage of OFP_TABLE as an output port (table loops).

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 23

DRAFT

Final Prototypes of Hardware-Specific Parts

2.3.3 Requirements, installaƟon and configuraƟon

The major requirement is of course the possession of an OCTEON network processor. There are different generaƟons of
OCTEON available, the HSP has been tested and developed for types OCTEON-1 (in the DELL SDP) and OCTEON-2 (in the
Emerson ATCA). Some minimal adjustments need to be done in the source code in order to adapt to the correct version.
InstallaƟon takes place typically through a serial interface (e.g., the USB port). ConfiguraƟon of ports etc. needs to happen
in the core(s) that run the CMM in the Linux implementaƟon.

2.3.4 Licenses and links

OCTEON HSP package Licence
xDPd As the Cavium SDK that is the basis for this work

comes with three different license models
(including GPL), we decided to provide our code
only to organisaƟons that themselves have
signed the NDA with Cavium Networks. Please
contact BISDN.

Table 2.3: License Table.

2.4 HSP for DOCSIS
2.4.1 Overview

The HAL Hardware Specific Part for the DOCSIS plaƞorm is implemented in several parts:

• ALHINP -- virtualizaƟon proxy

• AggregaƟon Hardware OpenFlow switch.

• OUI Hardware OpenFlow switch: OpenFlow switch instance running at the client side, next to the CableModem (CM)

The DOCSIS access network consists of a head end device (CMTS) and several tail end devices (CMs). The hardware OpenFlow
AggregaƟon switch is placed aŌer the CMTS, connecƟng the ALIEN DOCSIS plaƞorm with the core network.

ALHINP acts as a proxy that allows the system to expose the whole DOCSIS network as a single OpenFlow switch.
It converts incoming OpenFlow messages that come from a controller (OF 1.0) into acƟons/messages directed to the

OpenFlow switches (OF 1.2) (OUI and/or AggregaƟon) and the CMTS. It also processes messages incoming from the switches,
to generate new ones or to modify them, before sending them to the controller.

ALHINP is designed based on ROFL libraries. It has a configuraƟon file where the definiƟon of the ports and other
parameters are stored.

2.4.2 Supported funcƟonaliƟes

Currently the OpenFlow DOCSIS plaƞorm supports:

• OpenFlow 1.0

• Single VLAN tagged trafic incoming from user port.

• StaƟsƟcs per port / Desc

• Packet_IN / Packet_OUT

sudo ./oft basic -p 6633 -i 12@eth1 -i 21@eth2
basic.EchoWithData ... ok

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 24

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.5: DOCSIS ALIEN-HAL based architecture

Figure 2.6: DOCSIS virtual switch model

basic.PacketInBroadcastCheck ... ok
basic.DescStatsGet ... ok
basic.PacketOutMC ... ok

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 25

DRAFT

Final Prototypes of Hardware-Specific Parts

basic.PacketOut ... ok
basic.PortConfigModErr ... ok
basic.Echo ... ok
basic.PortConfigMod ... FAIL (*)
basic.FlowMod ... ok
basic.TableStatsGet ... FAIL (**)
basic.BadMessage ... ok
basic.FlowStatsGet ... FAIL (***)
basic.PacketIn ... ok

* as OFtest tries to set NO_FLOOD flag which is not used in OF1.2
** ALIEN DOCSIS platform has several tables virtualized as one.
*** Related to ROFL-0.3 and stats under OF1.2 version

Supported protocol fields matching:
OFtest uses a wildcarded inport, which is not currently supported by the plaƞorm, and the results are not successful.

However the plaƞorm supports the same matching fields as xDPD for Linux.

2.4.3 Requirements, installaƟon and configuraƟon

2.4.3.1 Requirements & InstallaƟon

ALHINP InstallaƟon ALHINP requires the Revised Open Flow Library [4] branch devel-0.3. To build all ROFL re-
quirement libraries must be installed.

$ git clone https://github.com/bisdn/rofl-core
$ cd rofl-core
$ git checkout devel-0.3
$ sh autogen.sh
$ cd build
$../configure
$ make
$ sudo make install

it also requires libconfig++-dev library. For Debian-based distribuƟons:

$ apt-get install libconfig++-dev

Compiling source code of ALHINP

git clone https://github.com/fp7-alien/alien-DOCSIS
cd ALHINP
./configure
make

Running ALHINP

./ALHINP <ALHINP.cfg>

This file describes required parameters to connect all devices in the ALIEN DOCSIS plaƞorm

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 26

DRAFT

Final Prototypes of Hardware-Specific Parts

// An example of ALHINP configuration file content.
name = "ALHINP";
desc = "EHU DOCSIS OF abstracted switch";
dpid = "1000000000000001";
// configuration:
ALHINP-config = {
//CONTROLLER-parameters

CONTROLLER_IP ="127.0.0.1";
CONTROLLER_OF_VERSION ="1.0";
CONTROLLER_PORT =6633;
LISTENING_IP_AGS ="158.227.98.21";
LISTENING_PORT_AGS =6633;
LISTENING_IP_OUIS ="192.168.10.1";
LISTENING_PORT_OUIS =6633;
DPS_IP ="10.10.10.62";
CMTS_IP ="158.227.98.6";
// MAC range of OF interface of the OUIs
OUI_MAC ="02:00:0C:00:00:00";
// Cable Modem MAC mask
CM_MAC ="A4:A2:4A:00:00:00";
VLANstart = 2;

};
// Port configuration
Port-config = {

//AGS ports
CMTS_PORT =1;
DATA_PORT =2;
DPS_PORT =3;
PROXY_PORT =4;

//OUIs ports
OUI_NETPORT =2;
OUI_USERPORT=1;

};
AGS-config ={

AGSDPID ="1";
};

ALHINP port mapping

AggregaƟon Switch An OpenFlow 1.2 compaƟble switch (soŌware or hardware) is required. In this case, xDPD
soŌware is used for AggregaƟon switch and OpenFlow User Instances (see Figure 2.8 for port mapping)

$ git clone https://github.com/bisdn/xdpd
$ cd rofl-core
$ git checkout master-0.3
$ sh autogen.sh
$ cd build
$../configure
$ make

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 27

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.7: ALHINP port mapping

$ sudo make install

Figure 2.8: AggregaƟon switch port mapping

OpenFlow User Instance An OpenFlow 1.2 compaƟble switch (soŌware or Hardware) is required. In this case,
xDPD soŌware is used for AggregaƟon switch and OpenFlow User Instances (see Figure 2.9 for port mapping). The same
steps are followed as in the aggregaƟon switch soŌware compilaƟon.

2.4.4 Licenses and links

DOCSIS HSP package Licence Link
HSP for DOCSIS (UPV/EHU) Mozilla Public Licence 2.0 (source code)

https://github.com/i2t/ALHINP
Table 2.4: SoŌware repository links

2.5 HSP for GEPON
2.5.1 Overview

The HAL Hardware Specific Part for the GEPON plaƞorm is implemented in two parts, one of which is off-the-shelf.

• xCPd the eXtensible Control Path daemon.

• Hardware OpenFlow switch.

The GEPON consists of a head end device (OLT) and several tail end devices (ONU). The hardware OpenFlow switch sits
between the OLT and the rest of the network -- in this case the hardware switch is xDPd running on a NetFPGA.

Figure 2.10 shows the GEPON system. The job of xCPd is to act as a proxy that allows the system to pretend that the
whole GEPON is a single distributed switch. It communicates with a lower OpenFlow switch with two ports (one facing the
GEPON and one facing the network). It allows the OpenFlow switch + GEPON system to pretend to be an N+1 port switch
where N is the number of ONU in the system. It converts incoming OpenFlow messages from a controller to a form that can
be understood by the lower OpenFlow switch and to convert messages from the switch into a form that can be understood
by the controller.

xCPd is inspired by xDPd and uses the ROFL libraries. It has a common configuraƟon file with xDPd so that if the lower
level switch is based upon xDPd (as the other HSPs in ALIEN are) then a common configuraƟon file can be used for the two.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 28

https://github.com/i2t/ALHINP

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.9: OUI port mapping

Figure 2.10: GEPON HSP general components

The lower level OpenFlow switch xDPd has two ports and communicates via OpenFlow to xCPd. xCPd pretends to be a
switch with more ports and translates matches and acƟons to an appropriate format for the lower switch (xDPd).

2.5.2 Supported funcƟonaliƟes

The GEPON installaƟon supports:

• One flow table

• Ethernet, VLAN, IPv4, ICMP and ARP matches

• Single port packet forwarding and drop acƟons

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 29

DRAFT

Final Prototypes of Hardware-Specific Parts

• Packet-in and Packet-out

• VLAN taggings (in some circumstances only)

The more detailed informaƟon about supported funcƟonaliƟes are presented as OFtest tool [1] results:
Basic protocol behaviour:

sh# connet@netfpga1 :~/oftest$ sudo ./oft basic -p 6633 -i 1@nf2c0 -i
2@nf2c1 -i 3@nf2c2 -i 4@nf2c3

basic.EchoWithData ... ok
basic.PacketInBroadcastCheck ... ok
basic.DescStatsGet ... ok
basic.PacketOutMC ... ok
basic.PacketOut ... ok
basic.PortConfigModErr ... ok
basic.Echo ... ok
basic.PortConfigMod ... ok
basic.FlowMod ... ok
basic.TableStatsGet ... ok
basic.BadMessage ... ok
basic.FlowStatsGet ... ok
basic.PacketIn ... FAIL (*)

The PacketIn task fails because it tests VLAN tagging that, unfortunately, fails because the tags are used by the OLT. If
the VLAN tagging test is removed then this test passes.

2.5.3 Requirements, installaƟon and configuraƟon

xCPd requires the Revised Open Flow Library [4] branch devel-0.3. To build all ROFL requirement libraries must be installed.

$ git clone https://github.com/bisdn/rofl-core
$ cd rofl-core
$ git checkout devel-0.3
$ sh autogen.sh
$ cd build
$../configure
$ make
$ sudo make install

Then install xcpd itself

$ git clone https://github.com/fp7-alien/xcpd
$ cd xcpd
$ sh autogen.sh
$ cd build
$../configure
$ make
$ sudo make install

If xdpd is to be used with a common configuraƟon file then the master-0.3 build must be used.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 30

DRAFT

Final Prototypes of Hardware-Specific Parts

$ git clone https://github.com/bisdn/xdpd
$ cd rofl-core
$ git checkout master-0.3
$ sh autogen.sh
$ cd build
$../configure
$ make
$ sudo make install

ConfiguraƟon
This file shows a joint configuraƟon file used by both xdpd and xcpd. The xcpd part is at the end. The first half of the

configuraƟon is a standard configuraƟon used by xdpd version master-0.3. Both xdpd and xcpd rely on this informaƟon. It
is not necessary that both share a common configuraƟon file but this is an opƟon for ease of use and to ensure that if xdpd
is used then both have a common view of the network. This version sets up the following.

xdpd connects to two ports, eth0 (network facing) and eth1 (OLT facing). xcpd pretends that the switch has five ports,
port 1 is eth0, port 2,3,4 and 5 correspond to eth1 tagged with vlan tags 10,11,12,13. The secƟons below:

queue-command-handling="drop";
port-stat-handling="passthrough";
port-config-handling="passthrough";

refer to the handling of OpenFlow messages related to queues, port stats and port config commands. The opƟons are
drop, passthrough or hardware specific handler. These commands are special in the sense that they refer to OpenFlow
funcƟonality which cannot simply be mapped by VLAN tagging. For example a request for port staƟsƟcs cannot just be
translated to a request for staƟsƟcs for a port and VLAN pair as detailed staƟsƟcs are not kept. Three opƟons are provided,
drop (the command is ignored), passthrough (the command is passed through to the corresponding underling physical port)
and "hardware" (the command is routed via the MGMT port of the OLT and hardware specific code).

#Example of configuration single using xcpd -- xcpd section is at end
config:{

openflow:{
logical-switches:{

#Name of the switch dp0
dp0:{

#Most complex configuration
dpid = "0x101"; #Must be hexadecimal
version = 1.0;
description="xdpd lower switch";
#Controller
mode="passive"; #active, passive, (TODO: both)
bind-address-ip="127.0.0.1";
bind-address-port=6633;
reconnect-time=1; #seconds
#Tables and MA
num-of-tables=1;
#Physical ports attached to this logical switch. This is mandatory
#The order and position in the array dictates the number of
1 -> eth0, 2 -> eth1
ports = ("eth0", "eth1");

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 31

DRAFT

Final Prototypes of Hardware-Specific Parts

};
};

};
xcpd:{

higher-controller-ip="127.0.0.1";
higher-controller-port=6634;
upward-mode="active";
queue-command-handling="drop";
port-stat-handling="passthrough";
port-config-handling="passthrough";
virtual-ports:{

dp0: {
port1:{

physical= "eth0";
};
port2:{

physical= "eth1";
vlan=10;

};
port3:{

physical= "eth1";
vlan=11;

};
port4:{

physical= "eth1";
vlan=12;

};
port5:{

physical= "eth1";
vlan=13;

}
};

};
};

};

2.5.4 Licenses and links

GEPON HSP package Licence Link
xCPd Mozilla Public Licence 2.0 (source code)

https://github.com/
fp7-alien/xcpd

Table 2.5: SoŌware repository links

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 32

https://github.com/fp7-alien/xcpd
https://github.com/fp7-alien/xcpd

DRAFT

Final Prototypes of Hardware-Specific Parts

2.6 HSP for L0 switch
2.6.1 Overview

The HAL Hardware Specific Part (HSP) for the ADVA Reconfigurable Add/Drop MulƟplexers (ROADMs) has been implemented
around ROFL library and also by extending the library funcƟonaliƟes not supported yet. Openflow's standard versions do
not support opƟcal switches by default. The extensions made to the protocol are based on the circuit switch extensions
v.0.3 [7] and are described in more detail in D2.3 (§4.1). UNIVBRIS has built a datapath enƟty on of the extended ROFL
library.

The agent connects to the ADVA's FSP3000 management interface and uses the SNMP protocol to control and fetch
characterisƟcs from the device. As shown in the picture below (Fig.7) the agent creates a resource model that is specific to
this device and contains a plethora of characterisƟcs, not necessarily relevant to the OpenFlow abstracƟon. Then the layer
above is responsible for picking and doing the mapping only for the characterisƟcs that are relevant to OpenFlow protocol.

The OpenFlow datapath can be installed and executed anywhere in any Linux host inside the network as long as the
device has been assigned an IP address for the management interface. However in terms of resilience and also to avoid
network latency it is advised to have it as much as possible closer to the device itself. Also the agent is running per device, so
if it is needed to control mulƟple opƟcal switches in the network mulƟple instances of the agent need to run simultaneously
as described in configuraƟon secƟon.

Figure 2.11: ADVA ROADM ROFL based datapath

2.6.2 Supported funcƟonaliƟes

OpƟcal switches compared to packet ones are lacking the noƟon of packet and there is no visibility in the payload thus no
packets can be matched to be sent to the controller. The datapath implementaƟon for the ADVA opƟcal switch has been
build to comply with OpenFlow v1.0 and the Circuit Switch Addendum v0.3 [7]. The SDN controller is making decisions
in advance all paths in the network have to get provisioned. Hence the OFMatch structure is in a way replaced by the
CFlowMod structure which is used to describe the cross-connecƟons inside an opƟcal node.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 33

DRAFT

Final Prototypes of Hardware-Specific Parts

Due to the fact the OpenFlow version we are using (1.0 with Circuit Extensions v0.3) is not supported by OFtest validaƟon
tool [1], we have performed the evaluaƟon of the agent using an version of NOX OpenFlow controller [13] that is able to
handle opƟcal devices that support OF1.0 with v0.3 opƟcal extensions. We are providing in the secƟons below screenshots
of the communicaƟon between the developed agent and the aforemenƟoned SDN controller. For this reason We have used
wireshark network protocol analyser to show the packet exchange between these two enƟƟes.

The following figure shows the iniƟal communicaƟon and secure channel setup with the exchange of HELLO messages.
AŌer establishment of the connecƟon the controller requests for features of the switch and gets a modified version of
FEATURES_REPLY as described below. Also the controller send a management request message to get informaƟon about
the device's management interface. AŌer the establishment of the connecƟon between the controller and the device we
aƩempt to create a cross-connecƟon between 2 ports of the device. So, the controller has to send a CFLOW_MOD message
followed by a POWER_EQ_REQUEST message. AŌer the establishment of the cross-connecƟon the agent replies with a
POWER_EQ_REPLY message to the controller.

Figure 2.12: Wireshark capture of iniƟal communicaƟon and circuit port cross-connecƟon

Figure 2.13 shows the messages printed in the agent's console while connecƟng to the controller. NOX also sends some
vendor messages to the agent. The first one is not for ADVA devices and has a different vendor_id so it is being ignored by
the controller while the second one is requesƟng some management informaƟon and it being handled by the ADVA agent.
All messages with their corresponding structures are described in the end of this secƟon.

ROFL library provides to the developers some convenience by providing ready-to-work methods to establish a secure
channel to the controller, maintain this connecƟon, handling messages etc. These faciliƟes have been used where possible
and in other cases have been extended to meet the device's requirements to ease the development of the agent. Also
other OpenFlow messages have been added to allow fetching features and controlling the device and are described in the
following paragraphs.

Handle features request/reply: Upon connecƟon establishment with the controller the agent has to inform about its
capabiliƟes. The Features_Reply message has different aƩributes compared to the corresponding one for packet switches,
especially the structure used to describe the opƟcal ports. We have included aƩributes like bandwidth and transmission
characterisƟcs, as well as the neighbours and their aƩributes since there is no neighbour discovery protocol, like LLDP in
packet, for the opƟcal domain.

Handle CFLOW_MOD messages: CFlowMod messages (OFType 255/22) are used in order to create cross-connecƟons
inside the opƟcal node. The agent parses the OpenFlow message received from the controller, discovers the ports of the

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 34

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 2.13: OpenFlow agent console startup and messages exchanged

switch that are defined and finally aƩempts to perform the cross-connecƟon by sending the appropriate SNMP commands.
In order to facilitate the control of the device and enable the SDN controller to fetch more useful informaƟon we have

implemented a number of new OpenFlow messages that are not part of the protocol neither the Circuit Switch Addendum.
In order to achieve that we have used the OFPT_VENDOR (4) experimenter message type and a special header aŌer the
usual OpenFlow one to differenƟate between the experimenter messages defined.

/* Vendor messages structs - ADVA specific */

struct ooe_header {
struct ofp_header header; // openflow header
uint32_t vendor; // vendor id
uint32_t type; // message type (OOE_ message type)
uint8_t data(0); // message payload

}

The VENDOR messages we are using for the ADVA ROADM have the same vendor id (OOE_VENDOR_ID), however what
differenƟates these experimenter messages is the 'type'. The values of this field are listed in the following enum and are
explained below.

/* ADVA specific VENDOR experimenter messages */
enum ooe_type {

OOE_SWITCH_CONSTRAINTS_REQUEST, /* switching constraints message */

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 35

DRAFT

Final Prototypes of Hardware-Specific Parts

OOE_SWITCH_CONSTRAINTS_REPLY, /* switching constraints message */
OOE_POWER_EQ_REQUEST, /* power equalization */
OOE_POWER_EQ_REPLY, /* power equalization */
OOE_MGMT_INFO_REQUEST, /* management info msg */
OOE_MGMT_INFO_REPLY /* management info msg */

};

Power equalizaƟon messages: When creaƟng a cross-connecƟon in the opƟcal switch we also need to perform power
equalizaƟon between the connected ports to achieve the actual establishment of the lightpath. Thus, aŌer the CFlow_Mod
the controller also sends a ooe_power_equalizaƟon message to the agent. The agent then needs to parse and perform the
power equalizaƟon between the connected

Switching constraints: This message provides informaƟon to the network administrator about the cross-connecƟons
that can be made in the opƟcal node. The switch does not have the ability to direct the opƟcal signal from any input
port to any output port. Each input port can only be connected to a list of output ports of the switch. The reply to the
OOE_SWITCH_CONSTRAINTS_REQUEST message returns exactly this informaƟon to the controller.

Management info: The mgmt_info message is used for communicaƟng informaƟon relevant to the management inter-
face (SNMP) of the device to the controller. The aƩributes we push to the controller are shown in the structure below.

/* ADVA management info extensions */
struct ooe_mgmt_info {

struct ooe_header header; // vendor message header
uint64_t dpid; // datapath id
uint32_t snmp_ip; // address of SNMP agent
uint32_t snmp_port; // port no of SNMP agent
uint8_t pad; // pad
uint8_t num; // number of bytes in 'community' array
uint8_t snmp_community[0];

};

2.6.3 Requirements, installaƟon and configuraƟon

As described in the secƟons above the ADVA ROADM OpenFlow agent is using the SNMP management channel in order to
communicate in the device. The code to make these calls is supplied by ADVA, is proprietary and not publicly available by
the company. Consequently it cannot be distributed as part of the datapath implementaƟon. The aforemenƟoned code is
responsible for sending the actual command to the device using the SNMP channel. Thus, the agent on receiving a message
from the controller it will parse it, decide what are the acƟons that it needs to take and finally, if necessary, send a message
either/or both to the controller and the device.

At the end of this secƟon we are providing the link to source code of agent's implementaƟon which includes the exten-
sions we have developed for OpenFlow protocol as well as the methods for marshalling and unmarshalling the OpenFlow
messages. The following text explains how to build and run the datapath in a modern Linux distribuƟon that offers the es-
senƟal build tools (autoconf, automake, libtool..). Also the user will with the addiƟon of libxml2-dev if not already installed.
The instrucƟons are similar to the ones for building the rofl-core library. AŌer installing the required build tools and libraries
you should run the following commands:

./autogen.sh

./configure
make
make install (optional)
export LD_LIBRARY_PATH=/path/to/adva-rofl-dp/adva-agent-rofl (ADVA library folder stub)

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 36

DRAFT

Final Prototypes of Hardware-Specific Parts

If everything goes well then you should have the datapath binary in the following folder:

../adva-rofl-dp/examples/advaswitch

and you can execute the agent by poinƟng to your configuraƟon file as explained below.
The agent is implemented in such a way so that is able to manage one switch at a Ɵme. In order to manage more than

one a device at a Ɵme mulƟple instances of the same agent need to my executed simultaneously using different configuraƟon
files. The contents of such a file are shown at the snippet below.

<config>
<host>10.0.34.10:161</host>
<community>private</community>
<trap>0.0.0.0:1620</trap>
<poll>0</poll>
<cpreload>10</cpreload>
<openflow>tcp:10.0.34.133</openflow>

</config>

The management IP (host aƩribute) is given to the agent so it will connect to the desired opƟcal switch. Furthermore,
the IP at which the OpenFlow controller is installed and listening for new devices, is given to the agent (openflow aƩribute).
The default port the agent tries to bind with the controller is set to 6653 since starƟng with OpenFlow version 1.4 this
port number is defined for OpenFlow control channel communicaƟon and any other port numbers used so far should be
considered deprecated. However, the user can define his own port number (if needed) from the command line when
execuƟng the ADVA agent. An example of running the controller is given below:

./advaswitch config10.xml [6633]

2.6.4 Licenses and links

Layer0 Switch Licence Link
OF Datapath for ADVA FSP3000
(UNIVBRIS)

Mozilla Public Licence 2.0 (source code) https://github.
com/fp7-alien/adva-rofl-dp

Table 2.6: SoŌware repository links

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 37

https://github.com/fp7-alien/adva-rofl-dp
https://github.com/fp7-alien/adva-rofl-dp

DRAFT

Final Prototypes of Hardware-Specific Parts

3 Lessons Learned
During the phase of implementaƟon of the Hardware Specific Parts, the teams gathered experiences and opinions related
to porƟng xDPd/ROFL to a given ALIEN plaƞorm as well as new recognized challenges related to enabling OpenFlow over
the hardware plaƞorms. This secƟon summarizes lessons learned, grouped by a specific plaƞorm.

3.1 EZappliance HSP
xDPd and its AFA interface framework perfectly fiƩed EZappliance HSP development requirements. It minimized required
coding to have the OpenFlow protocol controlling the plaƞorm. The xDPd framework and corresponding ROFL library were
used without any major problems.

The minor problem experienced during HSP implementaƟon were:

• In the beginning, there were no detailed guidance about creaƟng a new driver in xDPd. The corresponding guide
was added to the xDPd project later on, in xDPd version 0.3.

• CompilaƟon failed in some soŌware environments, depending on a specific OS and 32-bit vs 64-bit systems (i.e.:
Debian on 32-bit plaƞorm). The problem was solved in xDPd version 0.3.

• In xDPd version 0.3, a possibility to include EZappliance HSP specific configuraƟon parameters was hardly available.
Other means for storing these values had to be implemented. Later, this issue was solved in xDPd version 0.4.

• The EZappliance HSP does not require root privileges whereas xDPd framework requires this rights during the xDPd
instance launch.

• The EZappliance HSP uses a specific hybrid implementaƟon of the hardware driver which uses AFA with the ROFL
pipeline, so the EZappliance Specific Part developer needed to understand well GNU/Linux pipeline implementaƟon
and its usage.

• The EZappliance driver hybrid implementaƟon makes it more difficult to migrate xDPd/ROFL from version 0.3 to
version 0.4 because all ROFL OpenFlow pipeline source files had to be located properly and linked within EZappliance
driver directory.

• A few soŌware bugs have been discovered during the EZappliance development phase:

– in BadMessage error message generaƟon (solved in xDPd version 0.3)

– in handling driver extra-parameters from configuraƟon file (solved in xDPd version 0.4)

– logging setup with debug level in the config file (marked as very low priority problem in xDPd project and
currently skipped)

All bugs have been efficiently corrected by the xDPd development team.

3.2 NetFPGA HSP
Usage of NetFPGA requires its proper installaƟon in hosƟng operaƟng system. It is possible to use not fully correct installed
soŌware bundle, but in such a situaƟon not all funcƟonaliƟes will be realized properly and some features may be not acƟve
and even cause crash of soŌware or whole system. For this card, its developers prepared soŌware environment which was
fully tested and is supported on Fedora 14. In the Internet there are available hints how to install NetFPGA cards on different
and newer operaƟng systems, but some of them are defecƟve and led to improper configuraƟon, which seems to be valid
(compilaƟon of code is succeed), but detailed tests for parƟcular funcƟonaliƟes (which are available in NetFPGA source
code) can fail.

Basis installaƟon of NetFPGA driver in operaƟng system creates network interfaces in system for each physical port. By
default, they have the same default MAC addresses starƟng from the same value. When more than one NetFPGA card is

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 38

DRAFT

Final Prototypes of Hardware-Specific Parts

used in the same L2 segment based on Ethernet switch, all hosts (i.e. ports of NetFPGA cards) have to use different MAC
addresses. In this case, the user (developer) has to change default MAC addresses to custom ones. In case of usage of
the same MAC addresses by different NetFPGA cards, the problems do not have to occur in each case -- in some situaƟon
(mainly with traffic with low intensivity), switch can treat the same address on different ports as a re-plugged devices and
mechanisms from higher layers can mask gaps in communicaƟons. Due to this seeming improvements, real problems are
difficult to be idenƟfied. In case of intensive traffic from/to two hosts with the same MAC address, the performance is
significantly reduced and problems with proper funcƟonality are visible immediately.

Complementary situaƟon consists on usage of more than one NetFPGA cards in the same host -- their interfaces will
obtain automaƟc names (in form nfX, where X starts from 0 and represents numbers of physical plugs), but in this case
necessity of proper script and parameters adaptaƟon is obvious. Users also have to remember to reserve higher amount of
RAM memory for next NetFPGA cards.

3.3 DOCSIS HSP
As a result of the DOCSIS HSP implementaƟon several valuable lessons were learned, which can be beneficial for future
implementaƟons with similar characterisƟcs based on a proxy. The most relevant lessons are highlighted below.

• ROFL libraries have made easier the concepƟon of the proxy and its development.

• As the DOCSIS network uses VLAN_VID tags to idenƟfy traffic for each cable modem, it has been required to imple-
ment mulƟple tables, which implies the use of OF version greater than 1.1 at the aggregaƟon switch for supporƟng
incoming VLAN traffic handling. OF1.2 was available at ROFL when the implementaƟon phase begun.

• OrchestraƟng the FlowMod messages has been one of the biggest challenges of the proxy development. Having
several switches with DOCSIS access network behaving transparently as a unique one is a great challenge when
trying to orchestrate rules that have either the in-port wildcarded or the output is OFPP_ALL.

• The usage of METADATA and OF1.2 is required as QinQ traffic handling is a must. For that, the outermost tag is
removed and its value is wriƩen into the metadata field. This way, it is possible to have both VLAN fields available
for matching (one in the METADATA field and the innermost in the VLAN field, as it has not been removed).

• The WRITE_METADATA was not properly working at xDPd 0.4 version and it was reported to xDPd development team
who fix the implementaƟon releasing patch for xDPd 0.4.

• Obtaining the MAC address from the DPID didn't work properly when using xDPd 0.4, and it was also reported to
xDPd team.

• For tesƟng and benchmarking the DOCSIS ALIEN, it must be taken into account that, although it behaves as a OF
switch, it is an access network device and any comparison should be done against other access network devices (and
not against a pure vendor switch) to obtain the proper figures from this comparison.

• A validaƟon of an OpenFlow device cannot be done only by using the OFtest tool and it has to be validated under
real environment and real rules, as someƟmes OFtest can provide misunderstanding results.

3.4 GEPON HSP
Several important lessons were learned from the UCL implementaƟon. The experience of working with the ROFL libraries
was overall a good one and these libraries were a great benefit to the project. Without ROFL the implementaƟon would be
much more difficult than it was already.

A small number of bugs and omissions in the ROFL 0.3 libraries were found and corrected. These have been merged
into the devel-0.3 branch.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 39

DRAFT

Final Prototypes of Hardware-Specific Parts

The soluƟon of using VPN tags to ''virtualise'' the GEPON/ONU is simple to state, however, in pracƟce the implementa-
Ɵon was not so straighƞorward. Every OpenFlow message needed a soluƟon. The usual case this required ''matches'' and
''acƟons'' to be translated. If, for example, a match was on ''port 2'' in the virtualised switch this needs to be translated to
a match on port and possibly VLAN tag on the real hardware. Similarly an acƟon of ''output to port 2'' might translate to
''output to port 1 and tag with tag 11''. AcƟon lists could, therefore, become longer.

With regard to flowMod it became necessary to have the upper level controller (xCPd) to maintain a list of translated
and untranslated flowMods. In this way a request, for example, to delete flowMods matching a paƩern could be matched
against the list of flow-mods and then translated to several strict deleƟon. StaƟsƟcs replies require similar modificaƟons.

In general, implemenƟng an enƟre protocol requires consideraƟon of all the corner-cases in that protocol. Some of
these were not considered in our iniƟal design. For example, an acƟon to output to all ports or to flood to all ports needed
to be translated to several tag then output matches.

One problem which proved insurmountable was that of using VLAN tagging within the system. If a user wished to use a
VLAN tag through the virtualised switch then this tag is overwriƩen by the system. Similarly, if an unknown VLAN tag arrives
it would be impossible to know from which virtualised port it arrived.

3.5 L0 switch HSP
UNIVBRIS built the OpenFlow agent for the ADVA opƟcal switch using the ROFL library v0.3. The library offers a great support
for the developer and facilitates a lot the development Ɵme for building a fully operaƟonal agent. We did not have to build
the agent from scratch since the library provides easy to use methods for secure channel establishment and keeping alive the
connecƟon between the agent and the controller. If we divide the datapath implementaƟon in protocol message handling
and control channel handling the laƩer is completely implemented by ROFL methods.

The message handling was done using the methods provided by the library and namely the croĩase class. In the case
of the OpƟcal switch there some methods missing from the OpenFlow messages since the protocol has been extended to
accommodate these devices. The library's support has included the standard OpenFlow versions. Thus, in order to develop
a datapath for a device using the circuit extensions of the protocol [7] we had to extend the methods provided by croĩase.
For example CFlowMod messages and modified versions of FeaturesReply had to be added to the library for the purpose of
the opƟcal agent implementaƟon.

The process of adding these addiƟonal messages is streamlined which facilitates the development of the OpenFlow
agent. Furthermore, there is support for experimental/vendor messages that we used to the ADVA opƟcal switch. Surely, it
requires that the developer will invest some effort to get hold of the many different components of the library. The support
of different versions of the protocol add to the complexity of the library. In general, the learning curve is smooth and the
benefits apparent compared to designing and implemenƟng all the required funcƟonaliƟes starƟng from a white paper.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 40

DRAFT

Final Prototypes of Hardware-Specific Parts

4 xDPd/ROFL Improvements for ALIEN HSPs
There are four major improvements in ROFL and xDPd:

1. Renaming AFA to HAL

2. Driver specific iniƟalizaƟon parameters

3. Increased code reuse among drivers

4. Increased code quality

The first two deal with specific changes while the laƩer are more general. At first there is a refactoring of the code to
rename AFA to HAL, to have a more common terminology. In the end this led to a shorter learning curve of the code and
the exisƟng drivers. Further parameters were needed to iniƟalize some of the new hardware plaƞorms. Therefore the HAL
was extended to pass addiƟonal parameters to the driver, which is exposed for example in the default management plugin
(i.e. config). A user can specify the driver-extra-params in the system secƟon of the config file. In a more general view, the
mulƟple plaƞorms added in Alien led to an increased code reuse. Most of the new plaƞorms use the pipeline provided by
ROFL, thus many plaƞorms had to copy parts of the original code to create the HSP. BeƩer integraƟon of the generic packet
classifier in the pipeline was possible due to Alien. Drivers can benefit from improvements in ROFL and xDPd because of
this. Increased code quality and lots of bug fixes as a result of the interacƟon with a developer community were an outcome
of Alien.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 41

DRAFT

Final Prototypes of Hardware-Specific Parts

5 Conclusions
In this document HSP prototypes have been presented, which allow an OpenFlow control over a very diverse set of ALIEN
plaƞorms. Some of these plaƞorms are considered as for the first Ɵme enabled to parƟcipate in the SDN experiments (i.e.:
DOCSIS, GEPON) or the first open implementaƟon provided to the community (i.e.: EZappliance).

The criƟcal mission of the ALIEN project was to design, implement and validate the Hardware AbstracƟon Layer concept
[D2.2] which must be applicable to a wide range of network plaƞorms. Taking this into account, all HSP soŌware pacakges
have been implemented as proof-of-concept prototypes to validate if the ALIEN HAL design is flexible enough and easily
adaptable to devices with very different set of management and configuraƟon requirements. From this point of the view
it is important to analyse how different HSP prototypes fit into the HAL architecture and how xDPd/ROFL realizes plaƞorm-
independent components of the HAL architecture. This analysis is introduced in the deliverable D2.3 [D2.3], but focused
mainly on a funcƟonal level only. This document extends further the analysis from D2.3 and specifically focuses on a soŌware
level in relaƟon to the usage of ROFL (the library providing OpenFlow-related funcƟonality to controllers and datapath
elements) and xDPd (a framework enabling OpenFlow datapath element for different plaƞorms; based on the ROFL library).

Figure 5.1 presents how all HSP prototypes use xDPd, ROFL and HAL interfaces.

Figure 5.1: Usage of xDPd and ROFL

As one can easily spot from the figure, all HSPs use the ROFL library to provide an OpenFlow endpoint funcƟonality,
AFA/HPA interface definiƟons and the OpenFlow pipeline. xDPd is used by several plaƞorms (not all of them) as a soŌware
framework which helps enabling OpenFlow in alien equipment as defined in the HAL architecture. The situaƟon of DOCSIS,
GEPON and L0 switch is different, mainly caused by different Ɵmelines set to xDPd and ALIEN development processes. When
the HSP development process started, xDPd has been focused on Ethernet switch programmable devices. For all plaƞorms
which could not be represented as a single switch but were composed of a set of devices (i.e. GEPON, DOCSIS and L0 switch),
the xDPd soŌware stack was missing proper configuraƟon capabiliƟes, e.g. to express topology of interconnected devices.
For that reason some development teams started implemenƟng OpenFlow for their plaƞorms, basing directly on the ROFL
library. This approach has an impact on a possibility of the usage of HAL interfaces like AFA and HPA. For these plaƞorms,
development teams decided to use ROFL croĩase interface (defined in rofl-core\src\rofl\common\croĩase.h) which is a
direct OpenFlow protocol interface. AFA and croŌbase have many similariƟes because AFA is also made on the ROFL croĩase
foundaƟon. In contrast to ROFL croĩase, the AFA interface is hiding OpenFlow protocol mechanisms and thus is much beƩer
for the usage during the hardware driver implementaƟon. For this reason, the descripƟon of the ROFL croĩase interface
was skipped in the HAL specificaƟon [D2.2] and also it has not been documented in the HAL implementaƟon report [D2.3].
Last but not least, the hardware specific code based on croĩase methods can be ported to the xDPd framework, because
of AFA and croĩase symanƟc similariƟes. Overview of both approaches to HAL implementaƟon is presented in Figure 5.2.

With this deliverable WP3 is officially finalizing its acƟvity and the HSP prototypes development, however each HSP
prototype has sƟll long list of features idenƟfied which should be implemented in order to fully support OpenFlow specifi-
caƟons. Figure 5.3 presents summary of the WP3 acƟvity in the context of each HSP.

The documentaƟon for each HSP has been prepared in a form of deliverables (D2.3 and D3.3), soŌware prototypes have
been released and validated. The WP3 acƟvity has also performed its own demonstraƟons during the FIA2014 and TNC2014

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 42

DRAFT

Final Prototypes of Hardware-Specific Parts

Figure 5.2: HSP implementaƟon approaches (b) and (c) in the context of HAL architecture (a)

Figure 5.3: Development of HSP prototypes - summary

conferences using EZappliance and DOCSIS HSPs. Further validaƟon and demonstraƟon of all HSPs will be performed within
the OFELIA environment in WP5 acƟvity ("Experiments on OFELIA").

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 43

DRAFT

Final Prototypes of Hardware-Specific Parts

References
[1] Floodlight project, OFtest validaƟon tool. http://www.projectfloodlight.org/oftest/.

[2] Future Internet Assembly 2014. https://www.fi-athens.eu/.

[3] Object Management Group, Corba specificaƟons. http://www.omg.org/spec/index.htm.

[4] Revised OpenFlow Library. http://www.roflibs.org/.

[5] Terena Networking Conference 2014. https://tnc2014.terena.org/.

[6] The OpenFlow eXtensible DataPath daemon project. http://www.xdpd.org/.

[7] Extension to the OpenFlow Protocol in support of Circuit Switching. http://archive.openflow.org/wk/images/
8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf, 2010.

[8] Deliverable D3.2: SpecificaƟon of hardware specific parts. http://www.fp7-alien.eu/files/deliverables/
D3.2-ALIEN-final.pdf, 2013.

[9] Deliverable D2.2: SpecificaƟon of Hardware AbstracƟon Layer. http://www.fp7-alien.eu/files/
deliverables/D2.2-ALIEN-final.pdf, 2014.

[10] Ł. Ogrodowczyk et al. Hardware abstracƟon layer for non-openflow capable devices. The TERENA Networking Confer-
ence (TNC), May 2014.

[11] Bartosz Belter et al. Hardware abstracƟon layer as an sdn-enabler for non-openflow network equipment. In European
Workshop on SoŌware Defined Networking (EWSDN), September 2014. Accepted for publicaƟon.

[12] N. KaƩa, O. Alipourfard, J. Rexford, and D. Walker. Infinite cacheflow in soŌware-defined networks. In HotSDN Work-
shop, August 2014.

[13] M. Channegowda et al. Experimental demonstraƟon of an openflow based soŌware-defined opƟcal network employ-
ing packet, fixed and flexible dwdm grid technologies on an internaƟonal mulƟ-domain testbed. Opt. Express 21, pages
5487--5498, 2013.

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 44

http://www.projectfloodlight.org/oftest/
https://www.fi-athens.eu/
http://www.omg.org/spec/index.htm
http://www.roflibs.org/
https://tnc2014.terena.org/
http://www.xdpd.org/
http://archive.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf
http://archive.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.pdf
http://www.fp7-alien.eu/files/deliverables/D3.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D3.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D2.2-ALIEN-final.pdf
http://www.fp7-alien.eu/files/deliverables/D2.2-ALIEN-final.pdf

DRAFT

Final Prototypes of Hardware-Specific Parts

Acronyms
CMTS Cable Modem TerminaƟon System

DOCSIS Data Over Cable Service Interface SpecificaƟon

FPGA Field Programmable Gate Array

GEPON Gigabit Ethernet Passive OpƟcal Network

HAL Hardware AbstracƟon Layer

HSP Hardware Specific Part

IDE Integrated Development Environment

IP Internet Protocol

IPC Inter-Process CommunicaƟon

OF OpenFlow

OLT OpƟcal Line Terminal

ONU OpƟcal Network Unit

OUI OpenFlow User Instance

PCI Peripheral Component Interconnect

ROADM Reconfigurable Add/Drop MulƟplexer

SNMP Simple Network Management Protocol

TOP Task OpƟmized Processor

VLAN Virtual Local Area Network

Project: ALIEN (Grant Agr. No. 317880)
Deliverable Number: D3.3
Date of Issue: 25/07/2014 45

	Abstract
	Excecutive Summary
	Introduction
	HSP Prototypes
	HSP for EZappliance
	Overview
	Supported functionalities
	Requirements, installation and configuration
	Licenses and links

	HSP for NetFPGA
	Overview
	Supported functionalities
	Requirements, installation and configuration
	Licenses and links

	HSP for Cavium Octeon
	Overview
	Supported functionalities
	Requirements, installation and configuration
	Licenses and links

	HSP for DOCSIS
	Overview
	Supported functionalities
	Requirements, installation and configuration
	Licenses and links

	HSP for GEPON
	Overview
	Supported functionalities
	Requirements, installation and configuration
	Licenses and links

	HSP for L0 switch
	Overview
	Supported functionalities
	Requirements, installation and configuration
	Licenses and links

	Lessons Learned
	EZappliance HSP
	NetFPGA HSP
	DOCSIS HSP
	GEPON HSP
	L0 switch HSP

	xDPd/ROFL Improvements for ALIEN HSPs
	Conclusions
	References
	Acronyms

