

Abstraction Layer for Implementation of Extensions IN PROGRAMMABLE NETWORKS

Collaborative project co-funded by the European Commission within the Seventh Framework Programme

Grant agreement no:	317880
Project acronym:	ALIEN
Project full title:	"Abstraction Layer for Implementation of Extensions in programmable Networks"
Project start date:	01/10/12
Project duration:	24 months

Deliverable D5.3 Experimental-driven research - Appendix IV (OpenFlow Performance experiment results)

Version 7.9

Due date:	30/10/2014	
Submission date:	12/11/2014	
Editor:	Mariusz Żal (PUT), Maider Huarte (EHU)	
Author list:	Jannusz Kleban, Marek Michalski, Remigiusz Rajewski, Mariusz Zal (PUT), Damian Parniewicz, Łukasz Ogrodowczyk, Bartosz Belter, Artur Binczewski (PSNC).	

Dissemination Level

\boxtimes	PU:	Public
	PP:	Restricted to other programme participants (including the Commission Services)
	RE:	Restricted to a group specified by the consortium (including the Commission Services)
	СО	Confidential, only for members of the consortium (including the Commission Services)

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

Table of Contents

Exe	ecutive	e Summ	nary	7
1	Open	Flow p	erformance testing	9
	1.1	Testin	g scenarios	9
		1.1.1	PacketIn test	9
		1.1.2	PacketOut test	9
		1.1.3	Path_delay test	10
		1.1.4	Flow_add test	11
		1.1.5	Flow_mod test	11
	1.2	Experi	ments results	13
		1.2.1	NetFPGA	13
		1.2.2	EZappliance	36

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Figure summary

Figure 1-1 Packet_In test message flow diagram	10
Figure 1-2 Packet_Out test message flow diagram	10
Figure 1-3 Path delay in control and data plane test message flow diagram	11
Figure 1-4 The Add_flow test message flow diagram	12
Figure 1-5 The Mod_flow test message flow diagram	13
Figure 1-6 Performance tests of NetFPGA HAL implementation - connections between devices	14
Figure 1-7 Performance tests of NetFPGA – Packet_In	16
Figure 1-8 Performance tests of NetFPGA (Packet_In – 10Mbps)	18
Figure 1-9 Performance tests of NetFPGA (Packet_In – 50Mbps)	19
Figure 1-10 Performance tests of NetFPGA (Packet_In – 100Mbps)	19
Figure 1-11 Performance tests of NetFPGA (Packet_In – 250Mbps)	20
Figure 1-12 Performance tests of NetFPGA (Packet_In – 500Mbps)	20
Figure 1-13 Performance tests of NetFPGA (Packet_In – 1000Mbps)	21
Figure 1-14 Performance tests of NetFPGA – Packet_Out	23
Figure 1-15 Performance tests of NetFPGA (Packet_Out – 10Mbps)	24
Figure 1-16 Performance tests of NetFPGA (Packet_Out – 50Mbps)	25
Figure 1-17 Performance tests of NetFPGA (Packet_Out – 100Mbps)	25
Figure 1-18 Performance tests of NetFPGA – data_path_delay	27
Figure 1-19 Performance tests of NetFPGA (data_path_delay – 10Mbps)	28
Figure 1-20 Performance tests of NetFPGA (data_path_delay – 100Mbps)	29
Figure 1-21 Performance tests of NetFPGA (data_path_delay – 1000Mbps)	29
Figure 1-22 Performance tests of NetFPGA – control_channel_delay	31
Figure 1-23 Performance tests of NetFPGA – Add_flow delay	33
Figure 1-24 Performance tests of NetFPGA (add_flow)	34
Figure 1-25 Performance tests of NetFPGA (add_flow – max number)	35
Figure 1-26 Performance tests of EZappliance - setup topology	37
Figure 1-27 Performance tests of EZappliance – packet_in	39
Figure 1-28 Performance tests of EZappliance (packet_in – 10Mbps)	40
Figure 1-29 Performance tests of EZappliance (packet_in – 50Mbps)	41
Figure 1-30 Performance tests of EZappliance (packet_in – 100Mbps)	41
Figure 1-31 Performance tests of EZappliance (packet_in – 250Mbps)	42
Figure 1-32 Performance tests of EZappliance (packet_in – 500Mbps)	43
Figure 1-33 Performance tests of EZappliance (packet_in – 1000Mbps)	44
Figure 1-34 Performance tests of EZappliance – packet_out	46
Figure 1-35 Performance tests of EZappliance (packet_out – 10Mbps)	47
Figure 1-36 Performance tests of EZappliance (packet_out – 50Mbps)	48
Figure 1-37 Performance tests of EZappliance (packet_out – 100Mbps)	49
Figure 1-38 Performance tests of EZappliance (packet_out – 250Mbps)	50
Figure 1-39 Performance tests of EZappliance – data path delay	52
Figure 1-40 Performance tests of EZappliance (Data path delay – 10Mbps)	53
Figure 1-41 Performance tests of EZappliance (Data path delay – 100Mbps)	54
Figure 1-42 Performance tests of EZappliance (Data path delay – 1000Mbps)	54

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Figure 1-43 Performance tests of EZappliance – control channel delay	56
Figure 1-44 Performance tests of EZappliance – add flow delay	58
Figure 1-45 Performance tests of EZappliance (Add flow)	59
Figure 1-46 Performance tests of EZappliance (Add flow – max number)	61

Table summary

Table 1-1 Performance tests of NetFPGA – Packet_In results	22
Table 1-2 Performance tests of NetFPGA – Packet_Out results	26
Table 1-3 Performance tests of NetFPGA – Data path delay results	30
Table 1-4 Performance tests of NetFPGA – control_channel_delay results	32
Table 1-5 Performance tests of NetFPGA - add_flow results	35
Table 1-6 Performance tests of NetFPGA (add_flow – max number)	36
Table 1-7 Performance tests of EZappliance – Packet_in results	45
Table 1-8 Performance tests of EZappliance – Packet_out results	51
Table 1-9 Performance tests of EZappliance – Data path delay results	55
Table 1-10 Performance tests of EZappliance – Control channel delay results	57
Table 1-11 Performance tests of EZappliance - Add flow results	60
Table 1-12 Performance tests of EZappliance (Add flow – max number)	61

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

Executive Summary

This document complements the deliverable D5.3 entitled "Experimental-driven research" with details concerning testing scenario steps and all materials like logs, screenshots, packet dumps collected during performing of experimentation tests. We highly encourage to read first the D5.3 report which contains overview of the experiments, goals to be achieved, description of experiments environment and also discussion regarding experiment validation and analysis of obtained results.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

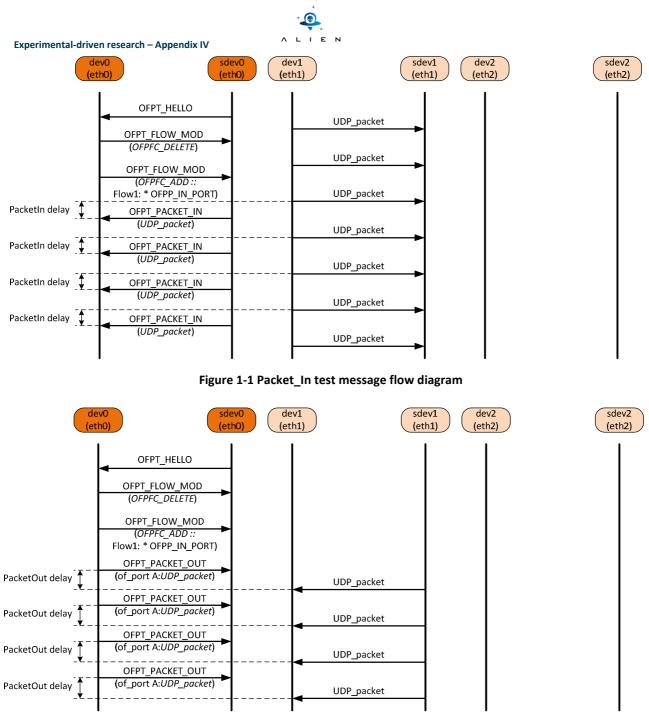
<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

OpenFlow performance testing

1.1 Testing scenarios

1.1.1 PacketIn test


For every packet that does not have a matching flow entry or if a packet matches an entry with a forward to In_Port action or when flow table is empty, an asynchronous packet-in event is sent to the controller. If the switch has sufficient memory to buffer packets that are sent to the controller, the packet-in events contain some fraction of the packet header (by default 128 bytes) and a buffer ID to be used by the controller, when it is ready for the switch to forward the packet. Switches that do not support internal buffering (or have run out of internal buffering) must send the full packet to the controller as part of the event.

ALIEN platforms are based on existing network devices and don't support such packet buffering. In In_Port action the OpenFlow controller receives whole data packets. It is very important to check, how many In_Packet actions can be served by Alien platforms and how length of data packets affect the delay of packet transfer. In order to measure In_Packet action throughput and packet delay, the following scenario, presented in Figure 1-1, was prepared. When ALIEN-OFLOPS application receives OFPT_HELLO messages, OFPT_FLOW_MOD message is sent. OFPT_FLOW_MOD contains OFPFC_DELETE action, which is applied to all installed flows. Simultaneously, through dev1 ALIEN-OFLOPS starts generate UDP packets, which contain (in payload field) sequence number and generation time. Since the OpenFlow switch flow table is empty, switch sends OFPT_PACKET_IN messages containing UDP packets. Basing on reception of OFPT_PACKET_IN message and generation time of conveyed UDP packet we can calculate delay of In_Packet action. Additionally, basing on sequence numbers loss probability is calculated. Test is repeated for different UDP packets sizes and different time interval between packets.

1.1.2 PacketOut test

This test scenario, presented in Figure 1-2, is similar to previous one. In this test ALIEN-OFLOPS application generates sequence of OFPT_PACKET_OUT messages, which convey UDP packets. As previously, UDP packets are marked by sequence numbers and OFPT_PACKET_OUT message generation time. The OFPT_PACKET_OUT message contains also of_port number determining the output port of the action. Basing on reception of UDP packets and generation time conveyed in this packet we can calculate delay of Out_Packet action. Moreover basing on sequence numbers loss probability is calculated. Test is repeated for different UDP packet sizes and different time interval between packets.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

1.1.3 Path_delay test

The Path_delay test allows determining path delay in control and data plane. In case of control plane both, OFPT_ECHO_REQUEST and OFPT_ECHO_REPLY messages are used. The data field in echo request message must be copied into echo replay data field. When OFPT_ECHO_REQUEUST is generated into this field the current system time is written. The difference between OFPT_ECHO_REPLY message reception time and the time included in data field of this message, indicates the control path delay.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

In the case of data plane path delay UDP packets are marked by the sequence numbers and packet generation time. In order to reduce packet processing time the flow table stores only one defined flow entry matches for incoming UDP packets and directs them into specific output port.

Path delay in control plane is determined without any parameters. Path delay in data plane is studied for different packet sizes and different time intervals between packets. The message flow diagram for this experiment is presented in Figure 1-3.

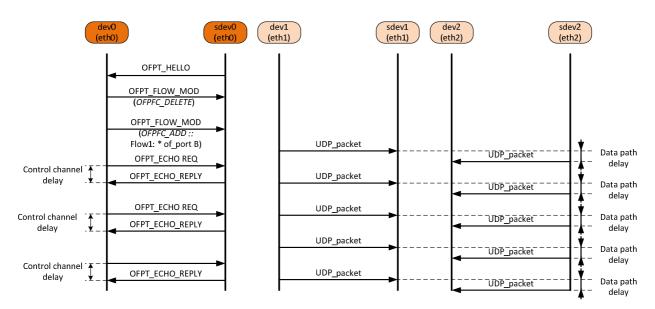


Figure 1-3 Path delay in control and data plane test message flow diagram

1.1.4 Flow_add test

The aim of this test is to determine time required to add the given number of flows. Only exact match flows entries are considered. This test procedure is repeated several times in order to achieve reliable test results. During whole test time ALIEN-OFLOPS application generates UDP packets containing in data field packet generation time and send these messages through dev1 port. In the first step Alien platform flow table is cleared. Next, the determined number of ADD_FLOW operation is generated and sent. It starts time counter. Only the last added flow entry matches generated UDP packets. According to action bound with this flow, the generated packets which appear on sdev1 port are directed to sdev2 port. When some packet occurs on dev2 port triggers the test procedure repetition and stops time counter. Time counter shows how long flows are installed. The message flow diagram for this experiment is presented in Figure 1-4.

1.1.5 Flow_mod test

The aim of this test is similar to Flow_add test. In Flow_mod test time required to modify the given number of table flow entries is determined. The message flow diagram for this experiment is presented in Figure 1-5.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

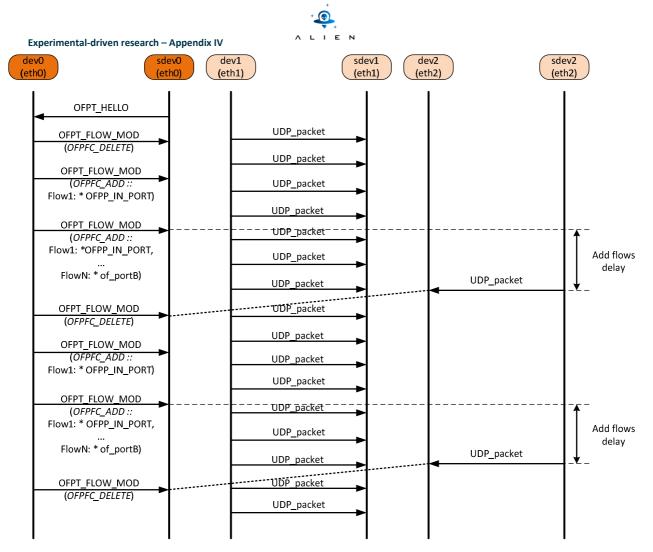


Figure 1-4 The Add_flow test message flow diagram

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

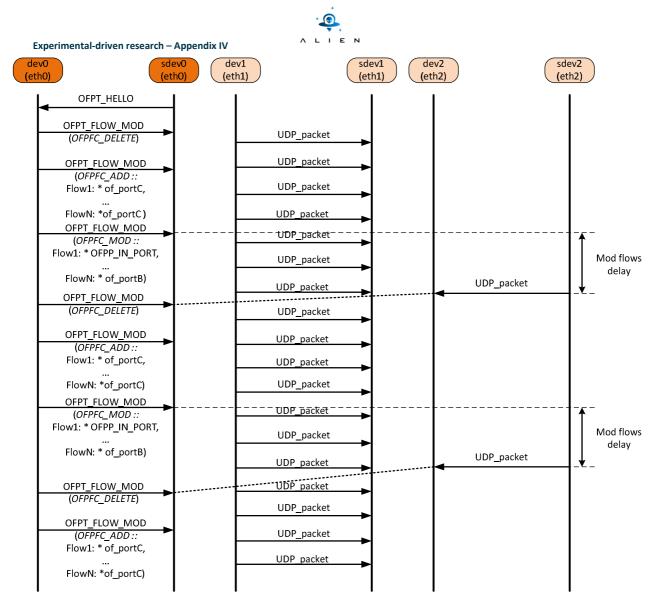


Figure 1-5 The Mod_flow test message flow diagram

1.2 Experiments results

1.2.1 NetFPGA

Performance tests of HAL implementation for the NetFPGA platform were done using the ALIEN OFLOPS framework and scenarios described in Section 5.1 of deliverable D.5.3. To test performance of OpenFlow-capable hardware based on 1G NetFPGA card (ports nf2c0 and nf2c1) the card was connected to OpenFlow testing platform (ports nf2c0 and nf2c1) also based on 1G NetFPGA card with ALIEN OFLOPS installed (see Figure 1-6). Communication channel between the NetFPGA platform and the OpenFlow testing platform was established using the OpenFlow v1.0 protocol as depicted in Figure 1-6. All tests were performed on machines available from range of OFELIA's IP addresses and can be managed remotely, however, the data connection have to be realized directly with no intermediate switches or another L2 bridges, (they can

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Deliverable Number:

Date of Issue:

D5.3 - Appendix IV

12/11/2014

be logically transparent, but some additional time delay could appears on each of such network element). So, the tester and tested equipment should be connected physically and they should be in the same facility.

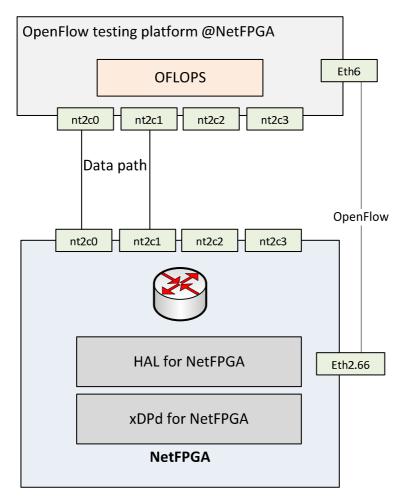


Figure 1-6 Performance tests of NetFPGA HAL implementation - connections between devices

xDPd was configured to work with ALIEN OFLOPS as the OpenFlow controller (xDPd.conf):

```
#Host A
  config:{
     openflow:{
       logical-switches:{
               #Name of the switch dp0
               dp0:{
                      #Most complex configuration
                      dpid = "0x1201021606613301"; #Must be hexadecimal
                      version = 1.0;
                      description="Switch A";
                      #Controller connection(s)
                      controller-connections:{
                              main:{
                                      remote-hostname="10.216.66.12";
                                      remote-port = 6633;
                                        _____
Project:
            ALIEN (Grant Agr. No. 317880)
```

};
};
#Reconnect behaviour
reconnect-time=1; #seconds
#Tables and MA
<pre>num-of-tables=1;</pre>
#Physical ports attached to this logical switch.
#This is mandatory
#The order and position in the array dictates the
number of
1 ->nf2c0, 2 ->nf2c1, 3 ->nf2c2, 4 ->nf2c3
ports = ("nf2c0", "nf2c1", "nf2c2", "nf2c3");
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

The following tests were done for the NetFPGA platform:

- Packet_In,
- Packet_Out,
- Data_path_delay,
- Control_channel_delay,
- Add_flow (with extension, in order to determine the maximum number of installed flows).

Results of the performance test for the NetFPGA platform were compared with the results obtained for the OpenVSwitch (OVS) OpenFlow switch implementation installed as a virtual machine. These results are presented on charts as well as in tables.

1) The Packet_In test

For Packet_In test the ALIEN OFLOPS framework generates UDP packets with a constant bit rate. Before the test the flow table was cleaned. So, UDP packets don't match any flow in the flow table stored in the NetFPGA card. All unmatched packets are forwarded to the controller (in this case to the ALIEN OFLOPS) in order to take the decision what to do with this new flow. Since the test must be repeated several times for a given set of parameters, ALIEN OFLOPS does not install any flow. The data flow within the testbed for this experiment is presented in Figure 1-7.

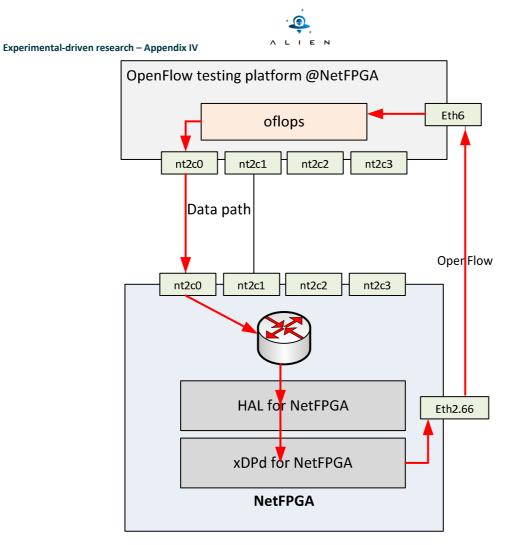


Figure 1-7 Performance tests of NetFPGA – Packet_In

Test condition

The Packet_In test was done for probe rates: 10, 50, 100, 250, 500, and 1000 Mbps. This parameter controls the data rate of the measurement probe. For all of these rates the following packet size was tested: 100, 300, 500, 700, 900, 1100, 1300, and 1500 B. In order, to approach experiment to the real network environment, we assumed that one per thousand generated data packets triggers of sending packet to the IN_PORT action.

The test duration was set to 60 seconds.

Test measurements

During Packet_In test the following parameters were measured:

- Mean and median delay of Packet_In messages together with a standard deviation measured in μs. This delay includes also the delay of the data plane.
- Throughput calculated as the number of packet_sent to the number of packet_received by ALIEN OFLOPS.

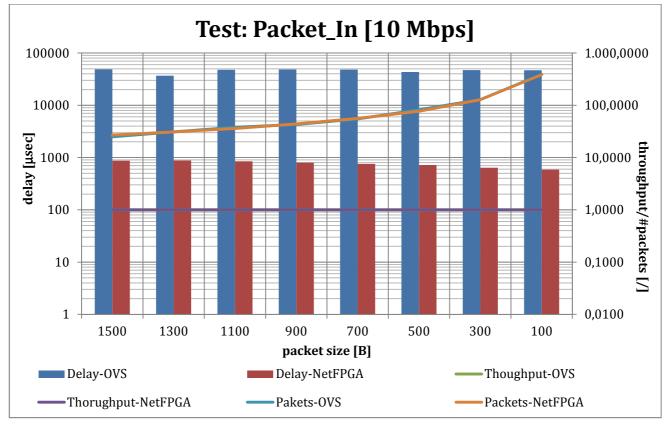
Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

• Number of packets – number of packets generated by ALIEN OFLOPS during the test (the test duration was 60 seconds).

The interval between UDP packets sent may be calculated in the following way:

```
data_snd_interval = (pkt_size * 8000000) / (datarate * 1024 * 1024);
```

The results of the Packet_In test were compared with the OVS implementation.


Test results

In Figure 1-8 Performance tests of NetFPGA (Packet_In – 10Mbps) are presented for the following data rates: 10, 100, 250, 500, and 1000 Mbps.

Values for posts (Delay-OVS and Delay-NetFPGA are denoted by the blue and the orange colour posts, respectively) are described by the vertical axis (delay) on the left side of the chart. In turn, values of the throughput and the number of packets are described by the right axis (throughput/# packets) on the right side of the chart.

It should be noted that Packets-OVS and Packets-NetFPGA charts (blue and green line colour on charts, respectively) are overlapped for all range of 10Mbps chart (see Figure 1-8) and partially for 50 Mbps chart (see Figure 1-9). The Throughput-OVS and Throughput-NetFPGA (grey and orange line colour on charts, respectively) are overlapped as well for all range of 10Mbps chart (see Figure 1-8) and partially overlapped for 50Mbps chart (see Figure 1-9).

Λ

LIEN

Figure 1-8 Performance tests of NetFPGA (Packet_In – 10Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

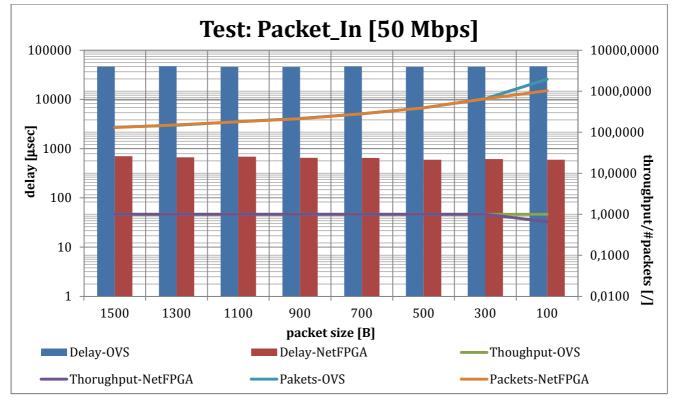


Figure 1-9 Performance tests of NetFPGA (Packet_In - 50Mbps)

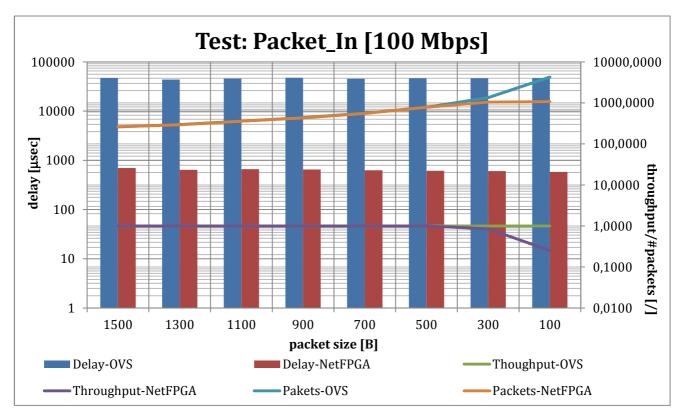


Figure 1-10 Performance tests of NetFPGA (Packet_In - 100Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

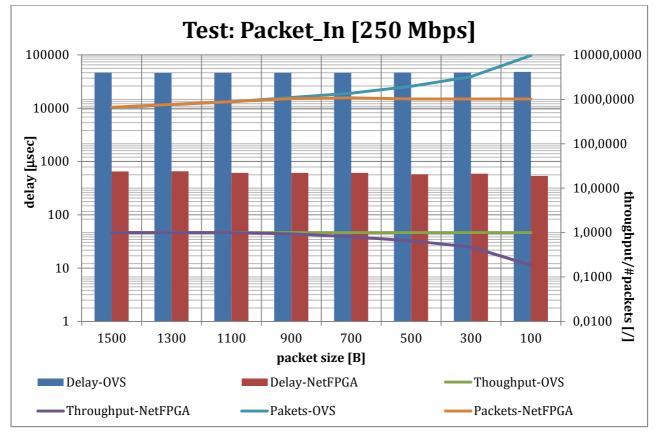


Figure 1-11 Performance tests of NetFPGA (Packet_In – 250Mbps)

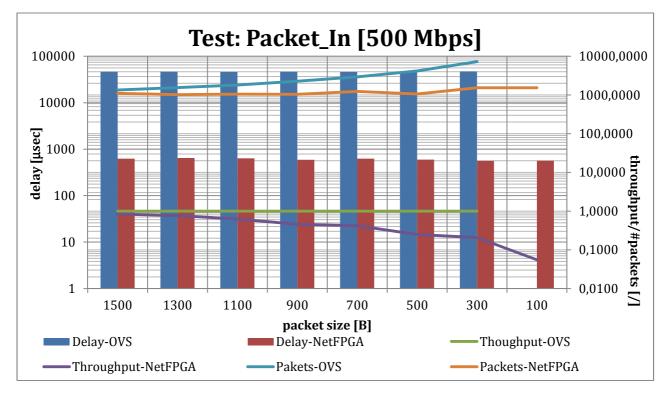
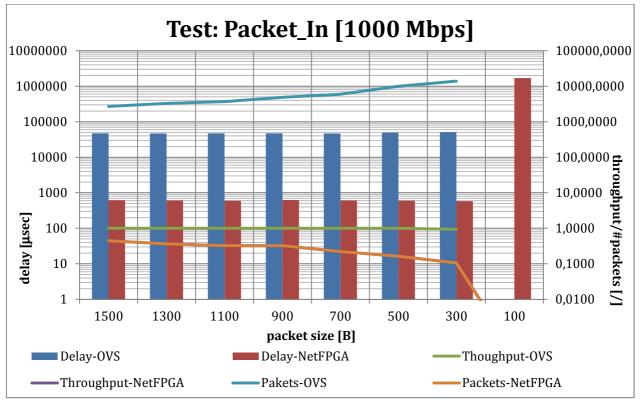



Figure 1-12 Performance tests of NetFPGA (Packet_In – 500Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

A L I

N

Figure 1-13 Performance tests of NetFPGA (Packet_In – 1000Mbps)

Experiment para	meters	NetFPGA	results			
Probe rate	Packet size					
(probe_rate)	(pkt_size)	mean	median	Standard deviation	throughput	packets
[Mbps]	[B]	[µsec]	[µsec]	[µsec]	[/]	.[/]
10	1500	870	686	946	1,0000	27
10	1300	878	635	1319	1,0000	31
10	1100	850	628	1309	1,0000	36
10	900	800	615	1210	1,0000	44
10	700	759	635	908	1,0000	56
10	500	720	630	809	1,0000	77
10	300	637	580	655	1,0000	128
10	100	589	566	420	1,0000	384
50	1500	702	659	495	1,0000	130
50	1300	669	620	599	1,0000	151
50	1100	687	648	513	1,0000	179
50	900	652	633	309	1,0000	214
50	700	648	630	308	1,0000	282
50	500	596	582	273	1,0000	393
50	300	616	606	279	1,0000	658
50	100	595	580	550	0,6613	1024
100	1500	698	678	309	1,0000	263
100	1300	643	623	342	1,0000	293

Project: Deliverable Number:	ALIEN (Grant Agr. No. 317880)
Date of Issue:	D5.3 - Appendix IV 12/11/2014

erimental-driven resear	ch – Appendix IV	X				
100	1100	663	649	282	1,0000	358
100	900	652	635	378	1,0000	429
100	700	630	622	222	1,0000	551
100	500	616	610	174	1,0000	785
100	300	606	600	225	0,8520	1043
100	100	581	575	231	0,2518	1077
250	1500	653	643	270	1,0000	663
250	1300	657	649	258	1,0000	768
250	1100	612	607	148	1,0000	887
250	900	613	606	199	0,9333	1036
250	700	613	611	135	0,8070	1080
250	500	575	568	236	0,6491	1024
250	300	593	588	213	0,4745	1024
250	100	535	536	12	0,1843	1024
500	1500	624	616	283	0,8401	1099
500	1300	646	641	153	0,7634	1024
500	1100	633	629	163	0,6266	1050
500	900	592	586	223	0,4555	1039
500	700	626	621	139	0,4216	1241
500	500	594	566	825	0,2485	1056
500	300	558	555	160	0,2077	1536
500	100	564	557	164	0,0553	1536
1000	1500	619	614	191	0,4473	1131
1000	1300	611	608	145	0,3655	1088
1000	1100	599	594	161	0,3237	1085
1000	900	623	618	192	0,3260	1024
1000	700	612	607	161	0,2220	1257
1000	500	606	593	408	0,1632	1529
1000	300	582	580	127	0,1056	1536
1000	100	1681487	2919803	1307625	0,0003	418

Table 1-1 Performance tests of NetFPGA – Packet_In results

We can conclude that the Packet_In message delay is stable (excluding the last experiment) and does not depend on packet size and interface speed. The small variation (about 200 μ sec) in measured delay is caused by both, the packet generation delay and the capture delay. Both processes were implemented in software (Linux). We can observe that when packet size and/or interface speed grows, i.e. when the time interval between two generated UDP packets becomes shorter than 25 ms, then packets are lost.

Packet_In messages are generated by the OpenFlow switch only when it does not find a proper entry in the flow table for a frame/packet. Results of this test together with Packet_Out test presented bellow show responsiveness of the system for a new (unknown) flow. We suspect that the instability at the end of investigated range (stream of 1000Mbps of packets with length of 100bytes) is caused by very disadvantageous relation between huge speed and small length of packets, which results with huge amount of packets to be served. Stream of packets with the same length but smaller data rate, contains smaller number of packets. Also, the stream of packets with the same speed (in Mbps) but greater length of packets, contains smaller number of packets, which is easier to be served. In other words, in this case the

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

number of packets is a problem. In real world it is hard to imagine such a stream of small packets which uses whole throughput of link. It is rather an attack than a traffic, even the artificial traffic.

2) Packet_Out

For the Packet_Out test the ALIEN OFLOPS framework generates OFPT_PACKET_OUT messages which are received by the xDPd for NetFPGA OpenFlow endpoint (see Figure 1-14). The UDP packet conveyed by OFPT_PACKET_OUT contains (in data field) information about UDP packet's generation time. The output port for UDP packets, on which packet must be send, are written in one of action field. After reception of UDP packet, Packet_Out delay is calculated (based on the reception time and information from UDP packet payload).

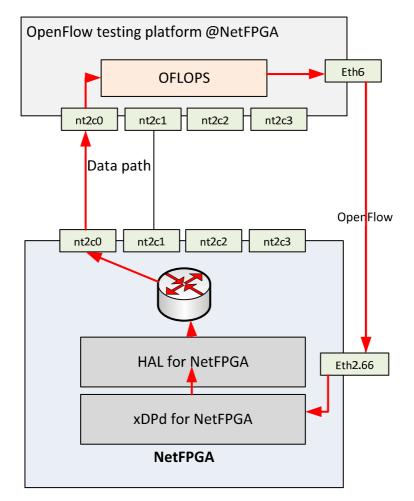


Figure 1-14 Performance tests of NetFPGA – Packet_Out

Test conditions

The Packet_Out test was done for probe rates: 10, 50, 100, and 250 Mbps. This parameter controls the data rate of the measurement probe. For all of these rates the following packet size was tested: 100, 300, 500, 700, 900, 1100, 1300, and 1500 B.

The test duration: 60 seconds.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Test measurements

During Packet_Out test the following parameters were measured:

- Mean and median delay of Packet_Out messages together with a standard deviation measured in µs
- Throughput calculated as the number of packet_sent to the number of packet_received by ALIEN OFLOPS.
- Number of packets number of packets generated by the ALIEN OFLOPS during the test (duration time was 60 seconds).

The interval between UDP packets sent may be calculated in the following way:

```
data_snd_interval = (pkt_size * 8000000) / (datarate * 1024*1024);
```

The results of Packet_Out test were compared with results obtained for the OVS implementation (see Table 1-2).

Test results

On charts shown in Figure 1-15 - Figure 1-17 results of Packet_Out test are presented for the following data rates: 10, 50, and 100 Mbps. In case of 100 (when packt_size is smaller than 600B), 250, 500, and 1000Gbps the xDPd resets the TCP connection to ALIEN OFLOPS. The results of these tests are not presented here. There are not typical situations and they have to be deeply investigated and improved.

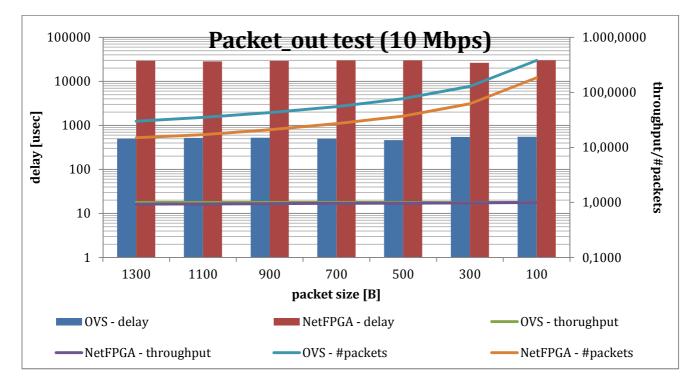


Figure 1-15 Performance tests of NetFPGA (Packet_Out - 10Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

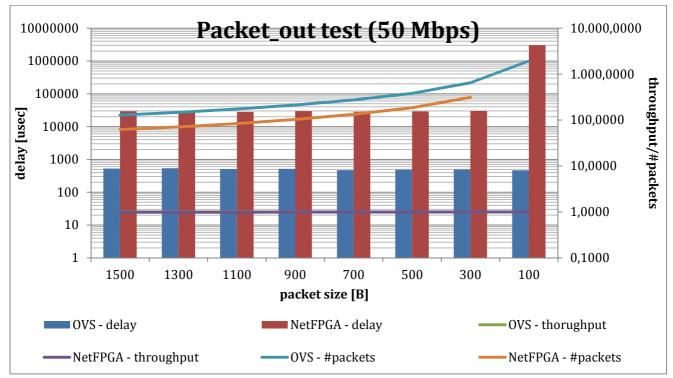


Figure 1-16 Performance tests of NetFPGA (Packet_Out - 50Mbps)

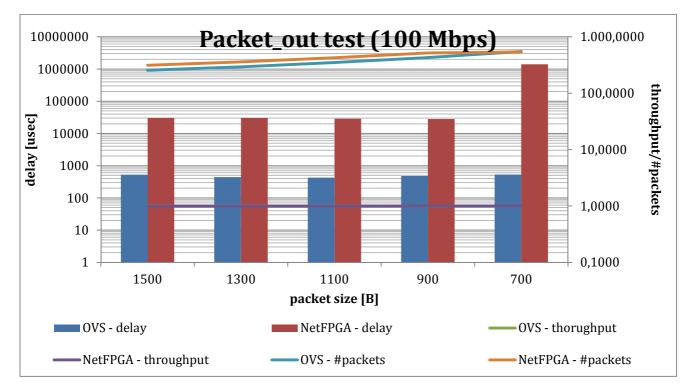


Figure 1-17 Performance tests of NetFPGA (Packet_Out - 100Mbps)

Test parameters

NetFPGA

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

	Packet size			standard		_
(probe_rate)	(pkt_size)	mean	median	deviation	throughput	#packets
[Mbps]	[B]	[µsec]	[µsec]	[µsec]	[/]	[/]
10	1500	28377	28191	2705	0,9231	13
10	1300	29347	27604	4843	0,9333	15
10	1100	28504	27313	4949	0,9412	17
10	900	29268	26953	5232	0,9524	21
10	700	29816	27517	5138	0,963	27
10	500	29911	29417	5099	0,973	37
10	300	26415	25884	3639	0,9839	62
10	100	30100	32761	5140	0,9946	185
50	1500	29500	28369	3793	0,9839	62
50	1300	29692	27671	4750	0,9859	71
50	1100	28035	26566	4296	0,9881	84
50	900	29662	27490	4973	0,9903	103
50	700	28383	27154	5806	0,9925	133
50	500	29070	29042	4072	0,9946	185
50	300	30126	27513	3763	0,9968	312
50	100	3028420	3053878	1708773	0,9981	539
100	1500	30499	29808	5026	0,9968	312
100	1300	30525	28880	4376	0,9972	359
100	1100	28809	27217	4976	0,9976	425
100	900	28182	28693	5784	0,9981	519
100	700	1401174	1432268	793703	0,9981	539

Table 1-2 Performance tests of NetFPGA – Packet_Out results

Results of this test together with Packet_In test show responsiveness of the system for a new (unknown) flows. In case of 250, 500, and 1000Gbps (and partially for 100Mbps) the xDPd resets the TCP connection to ALIEN OFLOPS. This is because the performance of the xDPd for a NetFPGA platform is not optimized. The software part of the system has to analyze and store many packets. Probably here we have the same problem as it was described in results discussion for test of Packet_In messages. This occurrence will be investigated in details in future. At this moment we have some ideas to optimize software by reducing the level of logging and debugging information as well as dedicated options of compilation.

3) Data_path_delay

The Data_path_delay tests measure how much time packet requires to be transmitted via the NetFPGA device. Delay between tester and the NetFPGA platform is constant and negligible during the test (Figure 1-18Figure 1-18).

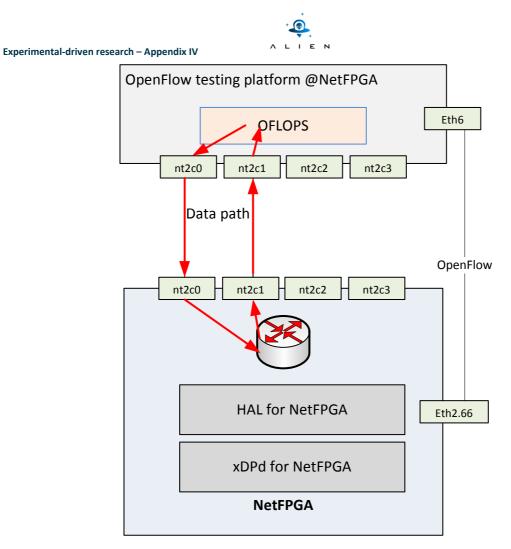


Figure 1-18 Performance tests of NetFPGA – data_path_delay

Test conditions

The test duration: 30 seconds.

Test measurements

During data_path_delay tests the following parameters were measured:

- Mean and median delay of data plane packet switching together with a standard deviation measured in μs.
- Throughput calculated as the number of packet_sent to the number of packet_received by ALIEN OFLOPS.
- Number of packets number of packets generated by the ALIEN OFLOPS during test (duration time was 60 seconds).

The interval between UDP packets may be calculated in the following way:

data_snd_interval = (pkt_size * 8000000) / (datarate * 1024*1024);

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

The results of data_path_delay test were compared with OVS implementation.

<u>Test results</u>

On the three charts showed in Figure 1-19- Figure 1-21 results of data_path_delay test are presented for the following data rates: 10, 100, and 1000Mbps.

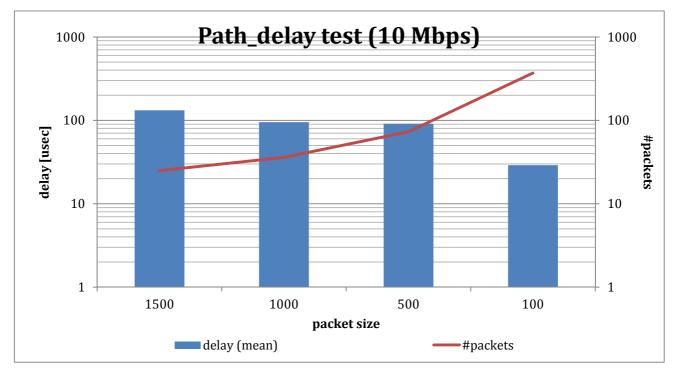


Figure 1-19 Performance tests of NetFPGA (data_path_delay – 10Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

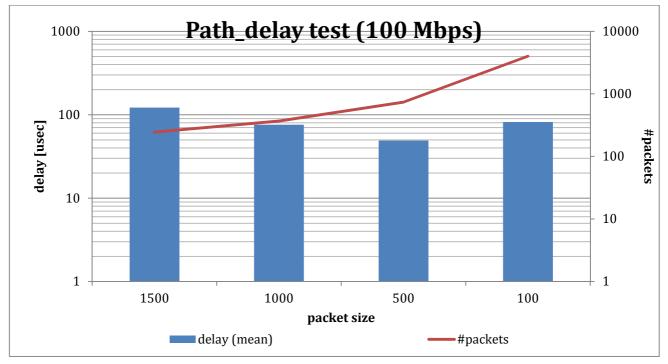


Figure 1-20 Performance tests of NetFPGA (data_path_delay – 100Mbps)



Figure 1-21 Performance tests of NetFPGA (data_path_delay – 1000Mbps)

	Probe rate (probe_rate)	Packet size (pkt_size)	mean	median	standard deviation	throughput	#packet send
-	[Mbps]	[B]	[µs]	[µs]	[µs]	[/]	[/]
	10	1500	132	115	31	1	25

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Experimental-driven r	esearch – Appendix IV
-----------------------	-----------------------

10	1100	95	97	6	1	36
10	500	91	94	8	1	73
10	100	29	30	0	1	369
100	1500	122	107	18	1	246
100	1000	76	77	0	1	368
100	500	49	49	1	1	737
100	100	82	88	13	1	4000
1000	1500	105	105	1	1	2546
1000	1000	90	95	8	1	3831
1000	500	67	58	16	1	9334
1000	200	61	59	26	1	28000

Table 1-3 Performance tests of NetFPGA – Data path delay results

The data_path_delay tests show that data plane packets switching time for NetFPGA device depends on frame length. The shortest measured frames (100 bytes) are switched in ~30 μ s whereas the longest (1500 bytes) are processed in ~130 μ s. Since in the flow table was installed only one flow (matches exact the generated traffic), so searching time is very low, presented values of delay represent only packet forwarding time. It shows the time of serving packets in the optimal (laboratory) conditions. More tests in more realistic cases can be also performed. Some details and assumptions for them are presented in Section XXX concluding this chapter.

4) The control_channel_delay test

In the control_channel_delay test the ALIEN OFLOPS tool sends OpenFlow Echo-requests to the NetFPGA device and measures delay receiving the OpenFlow Echo-reply messages (see Figure 1-22).

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

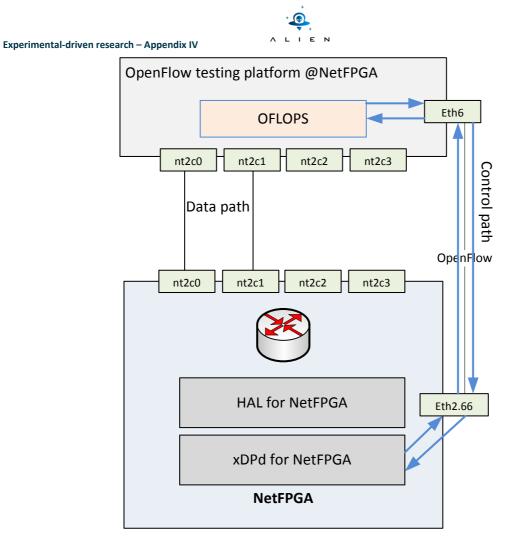


Figure 1-22 Performance tests of NetFPGA – control_channel_delay

Test conditions

The ALIEN OFLOPS was launched with parameter echo_rate=3.

Test measurements

During control_channel_delay tests the following parameters were measured:

- Mean and median delay of OpenFlow Echo-replay message with a standard deviation measured in µs.
- Throughput calculated as the number of packet_sent to the number of packet_received by ALIEN OFLOPS.
- Number of packets number of packets generated by the ALIEN OFLOPS during the test (duration time 60 seconds).

The interval between UDP packets may be calculated in the following way:

data_snd_interval = (pkt_size * 8000000) / (datarate * 1024*1024);

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

The results of control_channel_delay test were compared with OVS implementation.

<u>Test results</u>

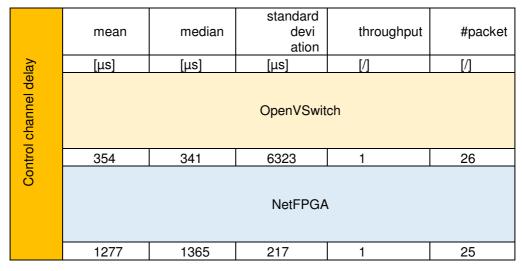


Table 1-4 Performance tests of NetFPGA – control_channel_delay results

In our test, the measured control_channel_delay is equal to 1.28 ms which is the time required to the xDPd and the ROFL software to generate an OpenFlow replay. Presented results are worse than for the OVS. It is caused by longer and not optimized software processing chain as well as by using two different machines (in OVS all tests have been realized on virtual machines, all inter-machine communications was exactly inter-process communication in the same physical PC). However, in this case the scenario is very close to real ones - controllers are realized by different machines than switches.

5) The Add_flow test

The Add_flow test is prepared in order to determine the time required to install the given number of flow table entries (Figure 1-23). In this test, the ALIEN OFLOPS framework generates UDP packets with constant bit rate and sends out them to the configured data plane port of the NetFPGA card. After 10 seconds the ALIEN OFLOPS starts sending a set of OpenFlow flowadd commands to the NetFPGA platform with the new flow entries. All commands are encapsulated in one (or more if needed) TCP segments. Only the last flow entry matches generated UDP packets. When the first TCP segment is generated, time counter starts. This counter is stopped when the first packet is received on a data port, configured as OUT_PORT in the last installed flow. Experiment is repeated. Values of time counter are used in order to calculate mean, median, and standard deviation of time consumed by the flow install action.

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

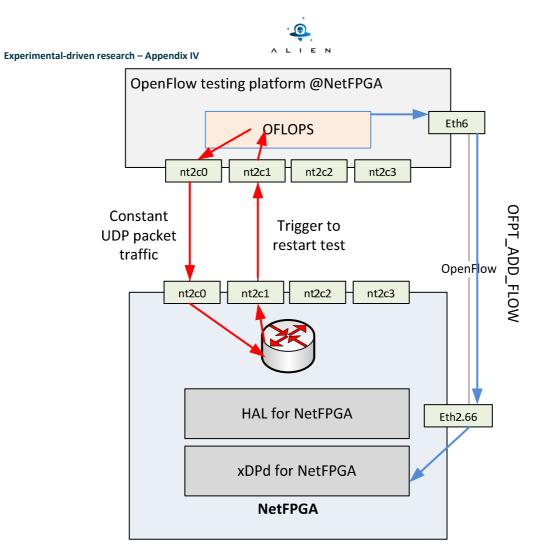


Figure 1-23 Performance tests of NetFPGA – Add_flow delay

Test conditions

The add_flow test was done for number of flows installed on the NetFPGA card: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100.

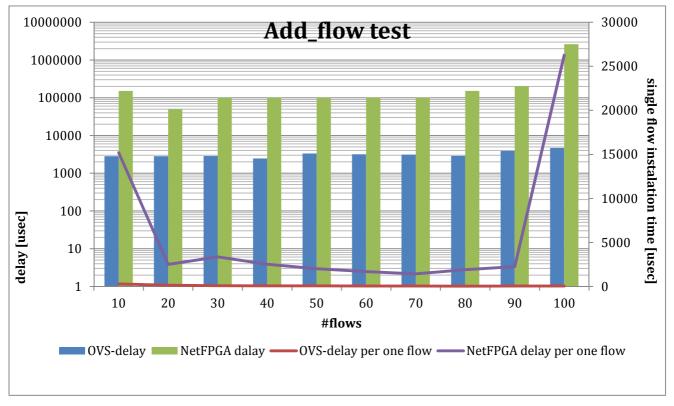
The additional test was done to measure a single flow installation time for the number of flows: 1-1000 in flow table stored in the NetFPGA card.

The test duration was set to 120 seconds.

Test measurements

During add_flow test the following parameters were measured:

- Mean and median delay of the installation of a given number of flow entries in the NetFPGA cards.
- Delay per single flow calculated from mean delay and the number of installed flows.


The interval between UDP packets may be calculated in the following way:

data_snd_interval = (pkt_size * 8000000) / (datarate * 1024*1024);

The results of add_flow test were compared with results obtained for the OVS implementation.

Test results

Results of add_flow test are presented on a single chart (see Figure 1-24).

Figure 1-24 Performance tests of NetFPGA (add_flow)

Flows	mean	median	standard deviation
[/]	[µsec]	[µsec]	[µsec]
1	14922	14922	1
10	151938	151935	15
20	49970	49971	1
30	100910	100920	20
40	100902	100917	23
50	100914	100916	8
60	100925	100935	24
70	100906	100916	26
80	151908	151889	30

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

90	202791	202919	433
100	2625542	2625259	1554718

Table 1-5 Performance tests of NetFPGA - add_flow results

We can observe that flow installation in the NetFPGA card is slower (more than two orders of magnitude) in comparison to the OVS software switch. Such difference is caused by the fact that HAL implementation adds additional processing stage.

On the chart showed in Figure 1-25it is presented a single installation time into the NetFPGA flow table. The time consumed by flow installation process depends strongly on the number of installed flows; however, in wide range the flow number is constant. Only for a higher number of installed flows, required time grows. The irregularity is caused by a different length of packets used for testing particular number of flows. It was necessary to change some parameters to create usable tests (acceptable by switches)

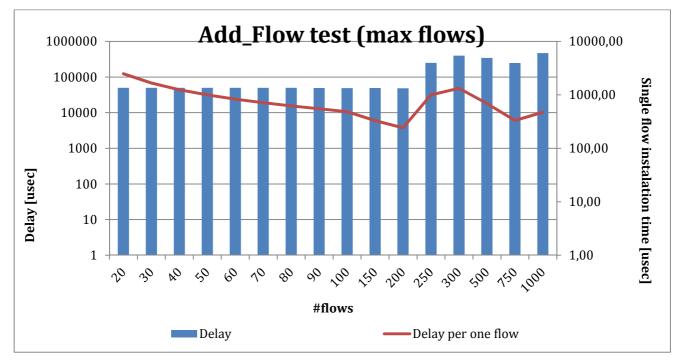


Figure 1-25 Performance tests of NetFPGA (add_flow - max number)

Add flow - max number	Delay [usec]	Single flow installation time [usec]
20	49899	2494,95
30	49996	1666,53
40	49933	1248,33
50	49927	998,54
60	49898	831,63
70	49972	713,89
80	49906	623,83
90	49615	551,28
100	48662	486,62

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

150	49554	330,36
200	48489	242,45
250	249451	997,80
300	399138	1330,46
500	345702	691,40
750	248890	331,85
1000	472663	472,66

Table 1-6 Performance tests of NetFPGA (add_flow - max number)

1.2.2 EZappliance

Performance tests of HAL-enabled EZappliance platform was done using ALIEN OFLOPS framework described above. To test performance of OpenFlow-capable hardware based on EZchip NP-3 network processor two data plane ports (eth1 and eth2) of EZappliance was connected to OpenFlow testing platform (ports nt2c0 and nt2c1) based on NetFPGA 1G card with ALIEN OFLOPS installed. Communication channel between EZappliance and testing platform was established using OpenFlow v1.0 protocol as depicted on Figure 1-26.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

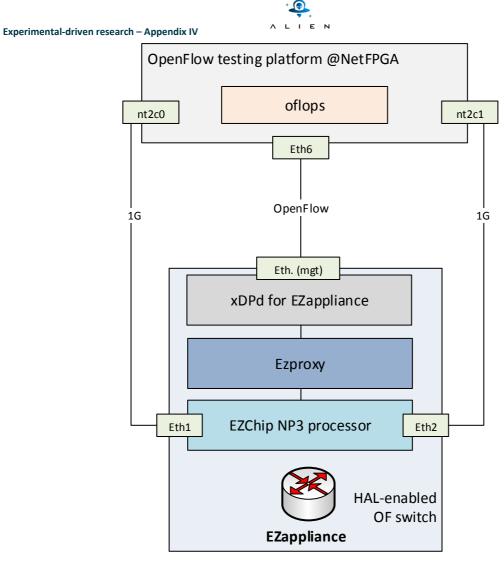


Figure 1-26 Performance tests of EZappliance - setup topology

xDPd was configured to work with ALIEN OFLOPS as OpenFlow controller (xDPd.conf):

```
#Controller
```

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

```
Experimental-driven research – Appendix IV
                     mode="active"; #active, passive, (TODO: both)
                     master-controller-ip="10.216.66.190";
                                  #master-controller-ip="localhost";
                     master-controller-port=6633;
                     reconnect-time=1; #seconds
                     #Tables and MA
                     num-of-tables=1;
                     #Physical ports attached to this logical switch. This is
   mandatory
                     #The order and position in the array dictates the number of
                     # 1 -> eth1, 2 -> eth2, 3 -> eth3
                     ports
                                            ("eth1",
                                                            "eth2",
                                                                            "eth3",
   "eth4","eth5","eth6","eth7","eth8","eth9","eth10","eth11","eth12","eth13","e
   th14","eth15","eth16");
             };
    };
   };
};
```

The following tests were done for EZappliance platform:

- Packet_in
- Packet_out
- Data_path_delay
- Control_channel_delay
- Add_flow

For all of these tests some statistics was captured. All abovementioned scenarios, test conditions, and results with charts are described in the following sub-chapters.

Test performance results for EZappliance platform was compared with OVS implementation and results are presented on charts and in the tables.

1) Packet_in

For Packet_in test ALIEN OFLOPS framework generates UDP packets that don't match any flow in the flow table into NPU. All unmatched packets are forwarded to queue dedicated for EZproxy. This module handles packets via Interrupt System Routines and then through TCP socket sent them to xDPd for EZappliance. xDPd configured to work with ALIEN OFLOPS as OpenFlow controller generates packet_in message and send it to ALIEN OFLOPS (Figure 1-27).

```
Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014
```

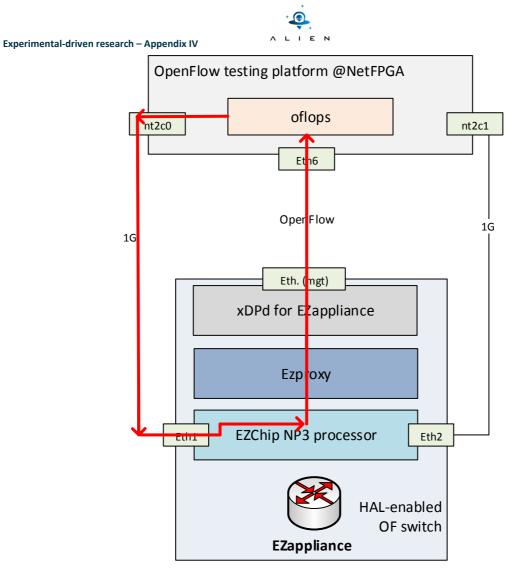


Figure 1-27 Performance tests of EZappliance – packet_in

Test condition

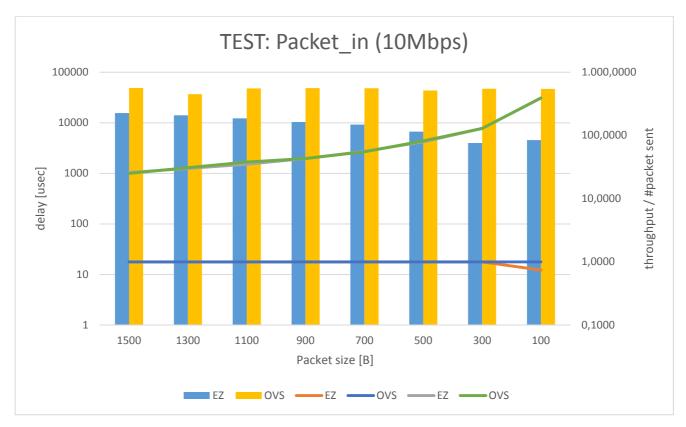
Packet_in test was done for probe rates: 10, 50, 100, 250, 500, 1000Mbps. This parameter controls the data rate of the measurement probe. For all of these rates the following packet size was tested: 100, 300, 500, 700, 900, 1100, 1300 and 1500B.

The test duration: 60 seconds.

Test measurements

During packet_in test the following parameters was measured:

 Mean and median delay of packet_in messages together with standard deviation – measured in μs. This delay includes also delay of data path (path between nt2c0 of NetFPGA and eth1 of EZappliance) but it is constant and negligible during the test.


- Throughput calculated as number of packet_sent to number of packet_received by ALIEN OFLOPS. Throughput factor equal 1 means: "all UDP transmitted by ALIEN OFLOPS packets was then received".
- Number of packets number of packets generated by ALIEN OFLOPS during test (60 seconds).

Interval between UDP packet sent may be calculated in the following way:

data_snd_interval = (pkt_size * byte_to_bits * sec_to_µs) / (datarate * mbits_to_bits);

The results of packet_in test were compared with OVS implementation.

<u>Test results</u>

On the next six charts results of packet_in test are presented for the following data rates: 10, 100, 250, 500, 1000Mbps.

Figure 1-28 Performance tests of EZappliance (packet_in – 10Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

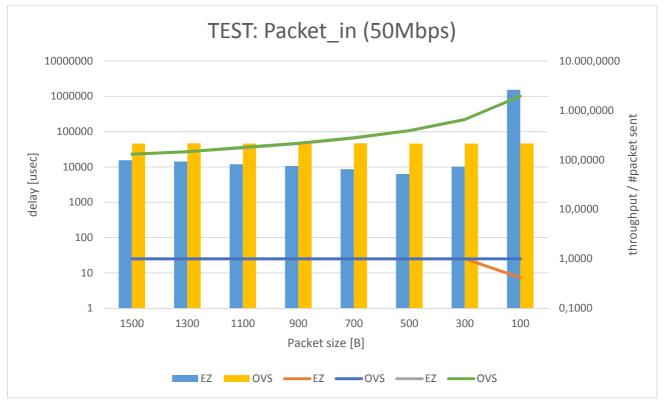


Figure 1-29 Performance tests of EZappliance (packet_in – 50Mbps)

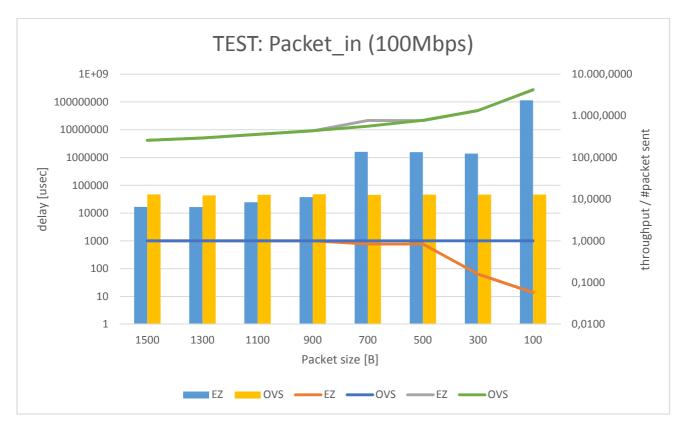


Figure 1-30 Performance tests of EZappliance (packet_in - 100Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

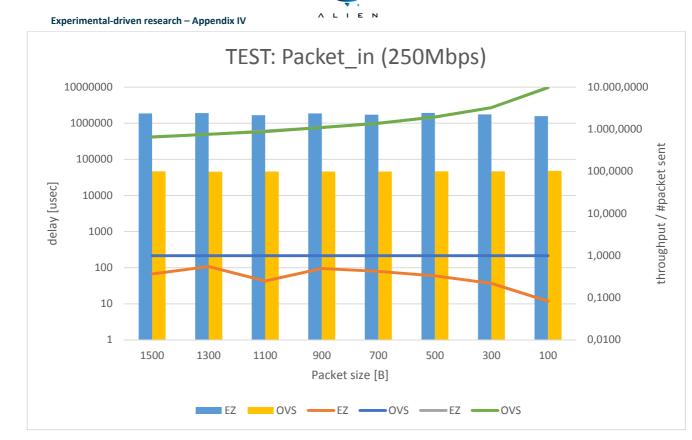


Figure 1-31 Performance tests of EZappliance (packet_in – 250Mbps)

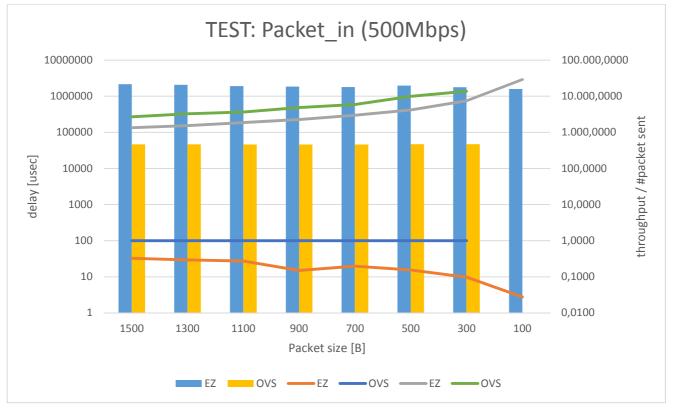


Figure 1-32 Performance tests of EZappliance (packet_in – 500Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

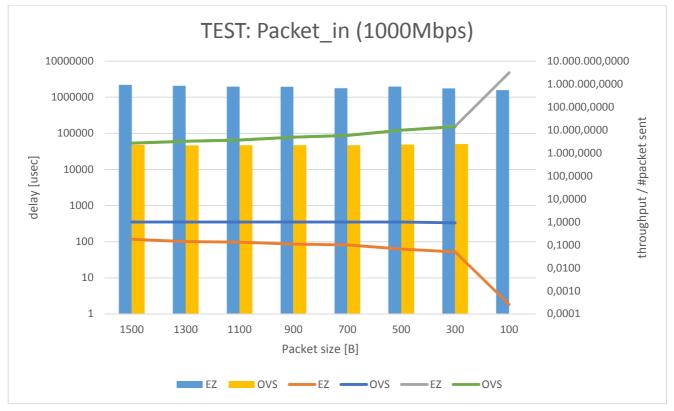


Figure 1-33 Performance tests of EZappliance (packet_in – 1000Mbps)

Probe rate (probe_rate)	Packet size (pkt_size)	mean	median	standard deviation	throughput	#packet received	#packet send
[Mbps]	[B]	[µs]	[µs]	[µs]	[/]	[/]	[/]
10	1500	15534	15341	1102	1,0000	26	26
10	1300	14072	13894	1009	1,0000	30	30
10	1100	12223	12103	1034	1,0000	35	35
10	900	10362	10255	801	1,0000	43	43
10	700	9235	8612	3792	1,0000	56	56
10	500	6674	6896	747	1,0000	79	79
10	300	3984	3816	700	1,0000	129	129
10	100	4535	2323	19349	0,7429	289	389
50	1500	15541	15482	5054	1,0000	129	129
50	1300	14259	13733	5754	1,0000	148	148
50	1100	12032	11987	699	1,0000	175	175
50	900	10739	10231	6586	1,0000	215	215
50	700	8673	8634	768	1,0000	276	276
50	500	6359	6144	1299	1,0000	391	391
50	300	10250	3811	26300	1,0000	660	660
50	100	1541228	1604160	282754	0,4137	800	1934
100	1500	16766	15237	13011	1,0000	260	260
100	1300	16569	13640	16637	1,0000	294	294
100	1100	24532	11943	50149	1,0000	361	361
100	900	37526	10187	79349	1,0000	435	435

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

			• •				
Experimen	tal-driven research	– Appendix IV	A L I E	И			
100	700	1597873	2003097	635419	0,8385	649	774
100	500	1572106	1998866	629196	0,8396	644	767
100	300	1385140	1786855	567947	0,1597	215	1346
100	100	115498487	115394325	1715982	0,0579	240	4142
250	1500	1873343	2267047	740970	0,3699	246	665
250	1300	1917489	2129081	521689	0,5503	416	756
250	1100	1679046	1980678	561956	0,2506	227	906
250	900	1874412	1999112	404125	0,4968	549	1105
250	700	1733803	1825408	331854	0,4235	592	1398
250	500	1924350	2027533	359675	0,3326	645	1939
250	300	1769380	1814656	311488	0,2201	715	3248
250	100	1580046	1613617	229694	0,0830	829	9982
500	1500	2164890	2294907	428905	0,3269	440	1346
500	1300	2076465	2143587	429624	0,2958	455	1538
500	1100	1905350	1994432	337124	0,2729	507	1858
500	900	1861236	2003723	415716	0,1505	340	2259
500	700	1794377	1831426	325259	0,1983	591	2981
500	500	1962652	2032041	332138	0,1541	645	4185
500	300	1779813	1812014	294726	0,0980	733	7481
500	100	1582667	1613236	229877	0,0277	808	29182
1000	1500	2207418	2299534	401273	0,1761	433	2666
1000	1300	2081058	2148332	371275	0,1414	457	3232
1000	1100	1965055	2002458	358257	0,1337	499	3731
1000	900	1955063	2007567	329973	0,1097	543	4948
1000	700	1787839	1834156	284612	0,1003	592	5902
1000	500	1962701	2033702	313863	0,0664	645	9709
1000	300	1754274	1811624	257843	0,0498	732	14696
1000	100	1573640	1614722	218358	0,0003	817	3140195

Table 1-7 Performance tests of EZappliance – Packet_in results

We can observe that packet_in message delay vary from milliseconds to hundreds of milliseconds depends on the packet size and probe rate. For the fixed probe rate (in Mbps) the smaller size of the packet means more UDP packets and packet_in messages generated during the test (60 seconds). For the system with throughput equal 1 the smaller size of the packets the smaller medium delay. For setup with many packet_in messages generated we observed packet losses (throughput<1). Although measured delay includes also data path delay (path from testing platform to EZappliance device) it is constant and negligible during the test.

Packet_in messages are generated by OpenFlow switch only when it does not find proper entry in the flow table for a frame/packet. Results of this test together with packet_out test presented bellow shows responsiveness of the system for a new (unknown) flow.

2) Packet_out

For Packet_out test ALIEN OFLOPS framework generates OFPT_PACKET_OUT messages that are received by xDPd for EZappliance OpenFlow endpoint. After that xDPd for EZappliance parse the message and send packet with 3B header through TCP socket between EZproxy and xDPd modules. 3B header contains out port number and packet size information. EZproxy uses EZChip API to NP-3 and send packets directly on the out port (see Figure 1-34).

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

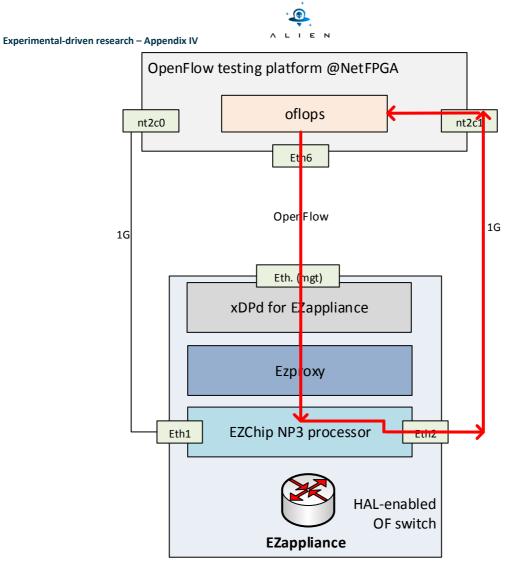


Figure 1-34 Performance tests of EZappliance – packet_out

Test conditions

Packet_out test was done for probe rates: 10, 50, 100 and 250 Mbps. This parameter controls the data rate of the measurement probe. For all of these rates the following packet size was tested: 100, 300, 500, 700, 900, 1100, 1300 and 1500B.

The test duration: 60 seconds.

Test measurements

During packet_out test the following parameters was measured:

 Mean and median delay of packet_out messages together with standard deviation – measured in μs. This delay includes also delay of data path (path between eth2 of EZappliance and nt2c1 of NetFPGA) but it is constant and negligible during the test.

- Throughput calculated as number of packet_sent to number of packet_received by ALIEN OFLOPS. Throughput factor equal 1 means: "all UDP transmitted by ALIEN OFLOPS packets was received".
- Number of packets number of packets generated by ALIEN OFLOPS during test (60 seconds).

Interval between UDP packet sent may be calculated in the following way:

data_snd_interval = (pkt_size * byte_to_bits * sec_to_µs) / (datarate * mbits_to_bits);

The results of packet_out test were compared with OVS implementation.

<u>Test results</u>

On the next four charts results of packet_out test are presented for the following data rates: 10, 50, 100 and 250Mbps. In case of 500 and 1000Gbps xDPd reset TCP connection to ALIEN OFLOPS.

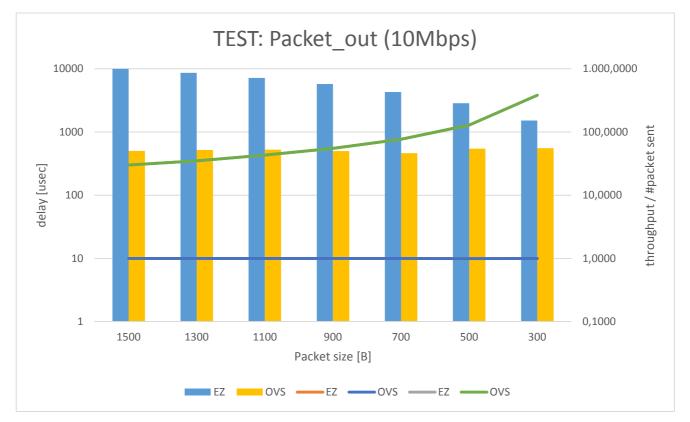


Figure 1-35 Performance tests of EZappliance (packet_out - 10Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

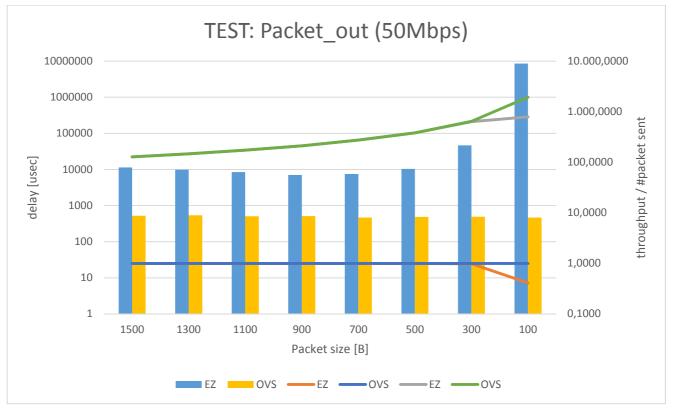
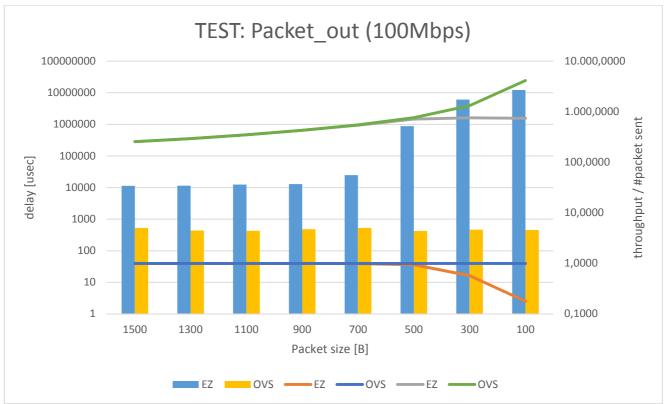
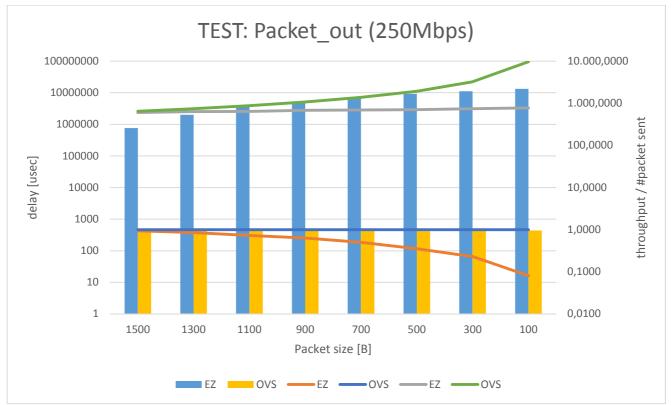



Figure 1-36 Performance tests of EZappliance (packet_out – 50Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014



N

Figure 1-37 Performance tests of EZappliance (packet_out - 100Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

ΕN

Figure 1-38 Performance tests of EZappliance (packet_out - 250Mbps)

Probe rate (probe_rate)	Packet size (pkt_size)	mean	median	standard deviation	throughput	#packet
[Mbps]	[B]	[usec]	[usec]	[usec]	[/]	[/]
10	1500	11338	11393	215	1,0000	26
10	1400	10785	10701	432	1,0000	28
10	1300	9999	10001	201	1,0000	30
10	1200	9234	9260	172	1,0000	32
10	1100	8644	8630	144	1,0000	35
10	1000	7547	7834	145	1,0000	39
10	900	7157	7140	171	1,0000	43
10	800	6403	6412	127	1,0000	48
10	700	5742	5742	135	1,0000	55
10	600	4998	504	112	1,0000	64
10	500	4284	4287	105	1,0000	77
10	400	3555	3550	91	1,0000	96
10	300	2852	2855	84	1,0000	128
10	200	2262	2140	1414	1,0000	191
10	100	1516	1491	421	1,0000	382
50	1500	11441	11407	205	1,0000	128
50	1400	10564	10581	287	1,0000	137
50	1300	9925	9921	269	1,0000	147
50	1200	9184	9151	346	1,0000	159

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

=		0.465	0.17.1		1.0000	
50	1100	8462	8474	177	1,0000	174
50	1000	7788	7794	158	1,0000	191
50	900	7084	7084	242	1,0000	212
50	800	7457	6352	10719	1,0000	238
50	700	7534	5633	17082	1,0000	274
50	600	7063	4953	18309	1,0000	319
50	500	10432	4242	38923	1,0000	382
50	400	10435	3461	40249	1,0000	476
50	300	46576	2790	136583	0,9814	633
50	200	1716213	2746691	1582887	0,8128	786
50	100	8571935	8382978	5049271	0,4084	790
100	1500	11363	11377	274	1,0000	255
100	1400	10663	10600	187	1,0000	274
100	1300	11414	9969	13228	1,0000	293
100	1200	11659	9190	19979	1,0000	319
100	1100	12362	8512	28259	1,0000	350
100	1000	13749	4490	38605	1,0000	382
100	900	12840	7107	34980	1,0000	427
100	800	14912	6348	45841	1,0000	476
100	700	24660	5591	73158	0,9891	542
100	600	40783	4917	90984	1,0000	645
100	500	879273	854979	566871	0,9371	716
100	400	3300362	3205699	1998436	0,7704	745
100	300	6043827	5816196	3608185	0,5747	758
100	200	8699188	8525521	5194296	0,3940	762
100	100	12206298	12266553	6908672	0,1786	740
250	1500	762383	910128	404458	0,9380	605
250	1400	1770876	1721142	915869	0,8915	616
250	1300	2014220	1784674	1288105	0,8562	637
250	1200	2996630	3371355	1858057	0,7940	640
250	1100	3976712	3877266	2320993	0,7270	639
250	1000	4249668	4248928	2441689	0,7063	683
250	900	5184766	5060932	3099257	0,6335	681
250	800	6314866	6376938	3686550	0,5616	679
250	700	7149137	7286982	4062426	0,5025	694
250	500	9287929	9232064	5389083	0,3545	705
250	300	11192068	11262685	6523404	0,2308	744
250	100	13319713	13368067	7578452	0,0803	776

Table 1-8 Performance tests of EZappliance – Packet_out results

Results of this test together with packet_in test shows responsiveness of the system for a new (unknown) flows. In case of 500 and 1000Gbps xDPd reset TCP connection to ALIEN OFLOPS. This is because of efficiency of connection between xDPd and EZproxy (Corba technology) and between EZproxy and NP-3 (EZChip API) – for the 250Mbps and big number of packet_out events the mean delay is over 10 second.

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

3) Data path delay

The data path delay tests measure how much time packet requires to be transmitted via EZappliance device. Delay between tester and EZappliance is constant and negligible during the test.

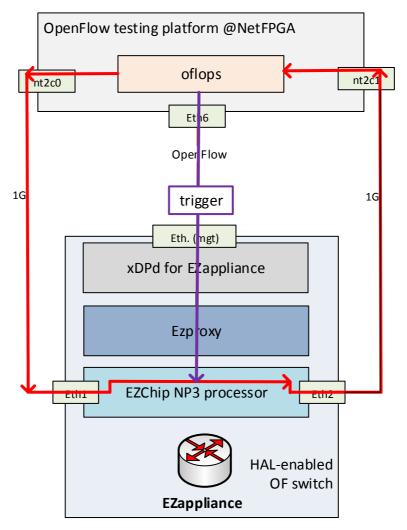


Figure 1-39 Performance tests of EZappliance – data path delay

Test conditions

The test duration: 30 seconds.

Test measurements

During data path delay tests the following parameters was measured:

 Mean and median delay of data plane packet switching together with standard deviation – measured in µs. This delay includes also delay of data path (path between nt2c0 of NetFPGA and eth1 of EZappliance and nt2c1 of NetFPGA and eth2 of EZappliance) but it is constant and negligible during the test.

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014

- Throughput calculated as number of packet_sent to number of packet_received by ALIEN OFLOPS. Throughput factor equal 1 means: "all UDP transmitted by ALIEN OFLOPS packets was then received".
- Number of packets number of packets generated by ALIEN OFLOPS during test (60 seconds).

Interval between UDP packet sent may be calculated in the following way:

data_snd_interval = (pkt_size * byte_to_bits * sec_to_µs) / (datarate * mbits_to_bits);

The results of path_delay test were compared with OVS implementation.

<u>Test results</u>

On the next three charts results of Data path delay test are presented for the following data rates: 10, 100, 1000Mbps.

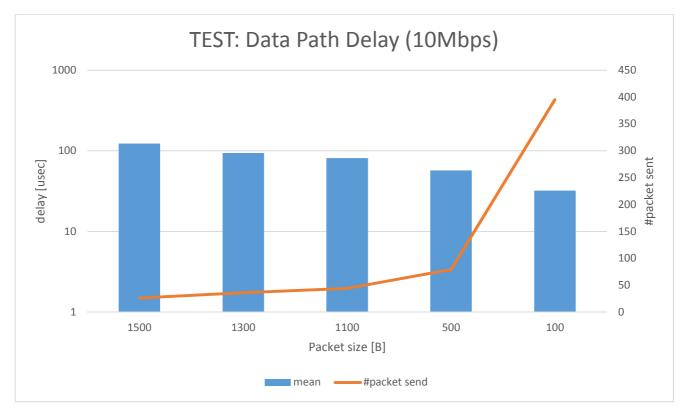


Figure 1-40 Performance tests of EZappliance (Data path delay – 10Mbps)

.	
Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

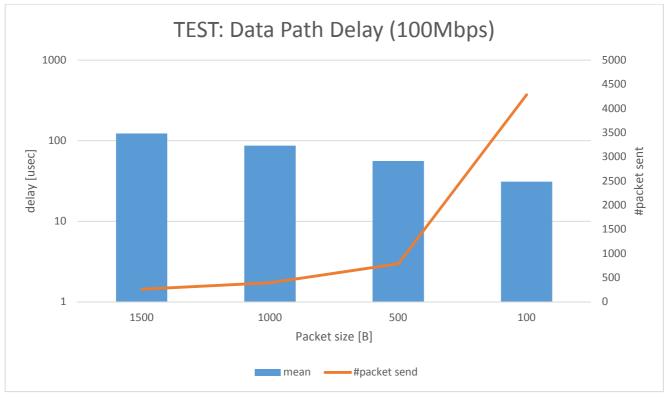


Figure 1-41 Performance tests of EZappliance (Data path delay – 100Mbps)

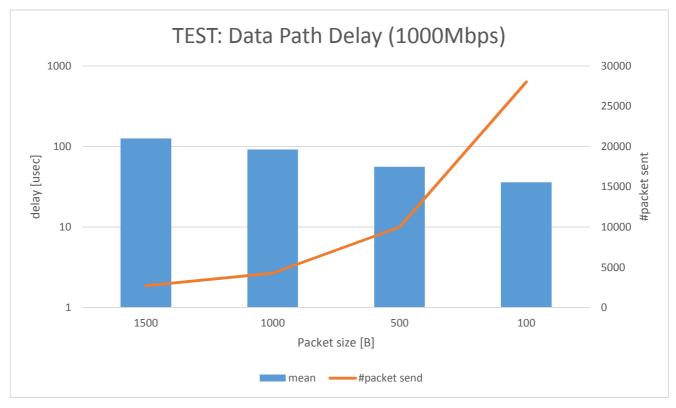


Figure 1-42 Performance tests of EZappliance (Data path delay – 1000Mbps)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Probe rate (probe_rate)	Packet size (pkt_size)	mean	median	standard deviation	throughput	#packet send
[Mbps]	[B]	[µs]	[µs]	[µs]	[/]	[/]
10	1500	123	122	6	1	26
10	1300	94	95	0	1	36
10	1100	81	82	0	1	44
10	500	57	58	1	1	79
10	100	32	32	1	1	395
100	1500	123	117	11	1	263
100	1000	87	87	6	1	395
100	500	56	56	1	1	790
100	100	31	31	2	1	4286
1000	1500	126	120	14	1	2727
1000	1000	92	90	7	1	4286
1000	500	56	55	2	1	10000
1000	200	36	37	1	1	28000

Table 1-9 Performance tests of EZappliance – Data path delay results

The data path delay tests shows that data plane packets switching time for EZappliance device depends on frame length. The shortest measured frames (100 bytes) are switched in ~30 μ s whereas the longest (1500 bytes) are processed in ~120 μ s. That dependency is not linear. The measured values not depend on data rate.

4) Control channel delay

In the control channel delay test, the ALIEN OFLOPS tool sends OpenFlow Echo-requests to EZappliance device and measures delay in receiving the OpenFlow Echo-reply messages (see Figure 1-43).

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

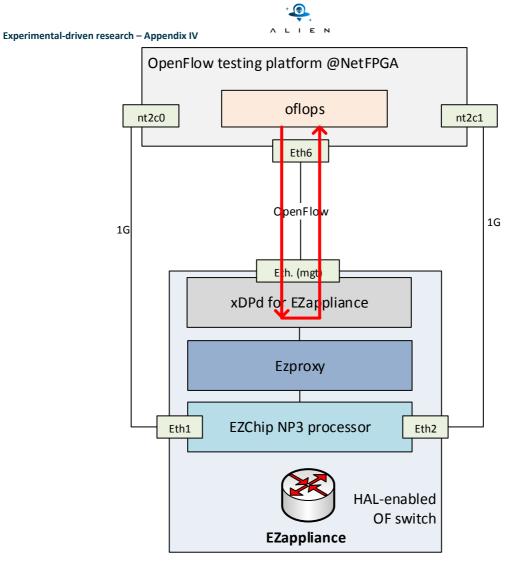


Figure 1-43 Performance tests of EZappliance – control channel delay

Test conditions

ALIEN OFLOPS was launch with parameter echo_rate =3.

Test measurements

During control channel delay tests the following parameters was measured:

- Mean and median delay of OpenFlow Echo-replay message with standard deviation measured in μs. This delay includes also delay of connection (path between eth6 of NetFPGA and eth_mngt of EZappliance) but it is constant and negligible during the test.
- Throughput calculated as number of packet_sent to number of packet_received by ALIEN OFLOPS .Throughput factor equal 1 means: "all UDP transmitted by ALIEN OFLOPS packets was received ".
- Number of packets number of packets generated by ALIEN OFLOPS during test (60 seconds).

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Interval between UDP packet sent may be calculated in the following way:

data_snd_interval = (pkt_size * byte_to_bits * sec_to_µs) / (datarate * mbits_to_bits);

The results of Control_channel_delay test were compared with OVS implementation.

Test results

	mean	median	standard deviation	throughput	#packet
	[µs]	[µs]	[µs]	[/]	[/]
I delay	OpenVSwitch	I			
aut	354	341	6323	1	26
Control channel delay	EZappliance				
ပိ	394	391	45	1	9

In our test, the measured control channel delay is 394 µs which is time required to xDPd and ROFL software to generate OpenFlow replay. This pure software processing make the results quite similar to result achieved for OVS.

5) Add_flow

Add_flow test measures latency between a new flow entry generation by OpenFlow controller and actual setup of flow rules in the datapath (i.e.: EZchip NP-3 processor). In this test, the ALIEN OFLOPS framework generates UDP packets and sends them to the first data plane port of EZappliance device. In mean time starts sending a set of OpenFlow flowmod messages to EZappliance with new flow entries. When the last flow entry generated by ALIEN OFLOPS is installed in EZchip network processor by EZproxy then UDP packets are started to be switched to second port of EZappliance and are received by ALIEN OFLOPS on second data plane port (see Figure 44).

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

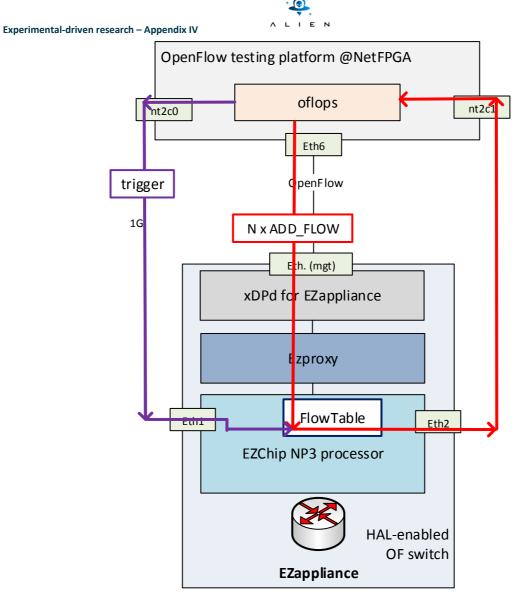


Figure 1-44 Performance tests of EZappliance – add flow delay

Test conditions

add_flow test was done for number of flows installed into EZappliance: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

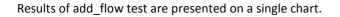
Additional test was done to measure single flow installation time for number of flows: 1-1000 into TCAM memory of EZappliance.

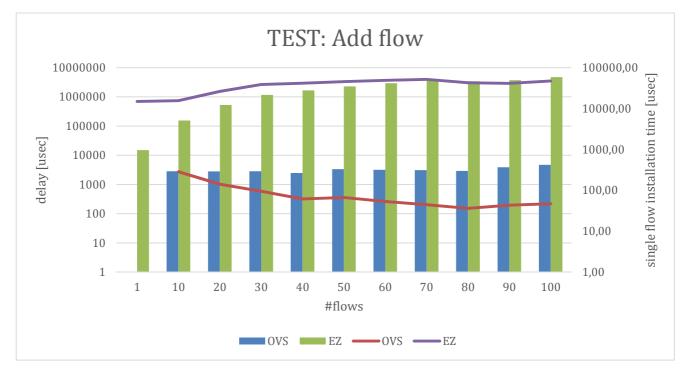
The test duration: 120 seconds.

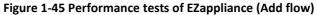
Test measurements

During add_flow test the following parameters was measured:

Project:ALIEN (Grant Agr. No. 317880)Deliverable Number:D5.3 - Appendix IVDate of Issue:12/11/2014


- Mean and median delay of the installation of a given number of flow entries in NPU, together with standard deviation – measured in μs. This delay includes also delay of data path (path between nt2c0 of NetFPGA and eth1 of EZappliance) but it is constant and negligible during the test.
- Delay per single flow calculated from mean delay and number of installed flows.


Interval between UDP packet sent may be calculated in the following way:


data_snd_interval = (pkt_size * byte_to_bits * sec_to_µs) / (datarate * mbits_to_bits);

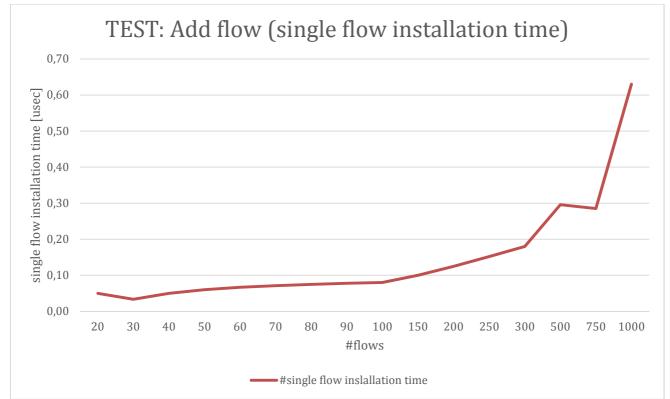
The results of add_flow test were compared with OVS implementation.

<u>Test results</u>

Flows	mean	median	standard deviation	delay per flow	Conditions
[/]	[µs]	[µs]	[µs]	[msec]	
1	14936	14934	7	14.9	probe_rate=200, data_rate= 200, pkt_size=400
10	154885	146786	23078	15.5	probe_rate=30, data_rate= 30, pkt_size=600
20	523291	549911	58061	26.2	

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Experim	iental-driven research – Appel				
30	1162310	1009956	113335	38.7	probe_rate=30,
40	1658019	1615951	107035	41.4	data_rate= 30, pkt_size=400
50	2274842	2221950	208504	45.4	pr.(_0i20=100
60	2940155	2878452	237216	49.0	
70	3623311	3534939	294745	51.8	
80	3401253	3334935	205869	42.5	probe_rate=30, data_rate= 30, pkt_size=600
90	3704700	3653947	216114	41.2	probe_rate=30, data_rate= 30, pkt_size=800
100	4715910	4576924	421603	47.1	probe_rate=2, data_rate= 2, pkt_size=1200


Table 1-11 Performance tests of EZappliance - Add flow results

We can observe that flow installation in EZappliance is much slower (more than two orders of magnitude) in comparison to OVS software switch. Such difference is caused by fact that EZappliance is storing flow entries in TCAM memory, which is very slow for writing operations whereas OVS is using fast DRAM memory. The single flow installation delay in EZappliance is increasing when more flows have to be installed for less than 70 flows and then this value fluctuating between 40-50 msec per flow. In [1], the some measurements for NEC IP8800 device showed that a single flow installation delay is between 2.5 to 10 msec.

On the following chart it is presented single installation time into TCAM memory of EZappliance. The more flows are requested to be installed the longer delay in installation of single flow. It is because of abovementioned speed of TCAM memory but also it is related to implementation of adding new entries into search structure of NP-3 processor – it is implemented using Corba technology which causes delays between xDPd and EZproxy as it was presented in deliverable D3.3. Also modular prototype deployment of HAL modules on separate VMs causes additional delays.

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014

Experimental driven research - Appendix IV

Figure 1-46 Performance tests of EZappliance (Add flow – max number)

Add flow - max number	Result	Delay [sec]	Single flow installation time [sec]
20	success	1 sec	0,05
30	success	1 sec	0,03
40	success	1 sec	0,05
50	success	3 sec	0,06
60	success	4 sec	0,07
70	success	5 sec	0,07
80	success	6 sec	0,08
90	success	7 sec	0,08
100	success	8 sec	0,08
150	success	15 sec	0,10
200	success	25 sec	0,13
250	success	38 sec	0,15
300	success	54 sec	0,18
500	success	148 sec	0,30
750	success	214 sec	0,29
1000	success	630 sec	0,63

Table 1-12 Performance tests of EZappliance (Add flow – max number)

Project:	ALIEN (Grant Agr. No. 317880)
Deliverable Number:	D5.3 - Appendix IV
Date of Issue:	12/11/2014