
Integrating complex legacy systems under
OpenFlow control: The DOCSIS use case

Victor Fuentes, Jon Matias, Alaitz Mendiola, Maider Huarte, Juanjo Unzilla and Eduardo Jacob
University of the Basque Country (UPV/EHU)

ETSI de Bilbao, Alda. Urquijo S/N, 48013 Bilbao, SPAIN
Email: {Victor.Fuentes, Jon.Matias, Alaitz.Mendiola, Maider.Huarte, Juanjo.Unzilla, Eduardo.Jacob}@ehu.es

Abstract—The possibility to deploy telecommunication services
based on the availability of a fully flow-aware network is an
appealing possibility. Concepts like Network Service Chaining
and Network Function Virtualization expect the information to
be manageable at the flow level. But, for this concept to be
available for the development of user-centric applications, the
access network should also be made flow-aware. In this paper
we present the integration of a legacy DOCSIS based access
network under an OpenFlow Control Framework by using the
Hardware Abstraction Layer designed in the FP7 ALIEN project.
The result is a dynamic wide area OpenFlow switch that spawns
from the aggregation switch to the home equipment and hides
all the complexity (including the provisioning) of the access
technology to an unmodified and standard OpenFlow controller.
As a result, the access network can react not only to any kind
of user traffic but also to the connection of CPE to the network.
The approach used is technology independent, and the results
have been successfully demonstrated over a Cisco based DOCSIS
access network.

Index Terms—Access Networks, OpenFlow, DOCSIS, Proxy

I. INTRODUCTION

The Software Defined Networking (SDN) initiative is
clearly gaining momentum, and after some time on the top
of the peak of the Hype Cycle [1], the promise of benefits
is becoming more and more real, undoubtedly pushed by the
OpenFlow phenomena.

Nevertheless, there are still several aspects that could hinder
the wide deployment of SDN based architectures. On the one
hand, the main reason is that it involves replacing hardware
to get an OpenFlow interface. On the other hand, is the
unavailability of an OpenFlow control on some networking
sub-systems. In fact, there are many proposals and current ex-
periences using OpenFlow in campus and datacenter networks,
and even in the interconnection of datacenters as stated in [2].
Furthermore, Research and Education Networks like GEANT
and GENI are already testing solutions for the core. But, no
much work has been done in areas such as the access network.

One of the reasons is the complexity of the access net-
work, that includes management interfaces for configuration
of physical parameters which are not available in Ethernet
based networks and for which OpenFlow does not have the
required commands. Another reason is that there is usually
a provisioning phase that is needed as a previous stage to
any packet or frame exchange. In the case of DOCSIS access
networks (which will be further explained in Section II),
without the provisioning of the Cable Modems (CM), it is not

possible to achieve the reactiveness needed at the OpenFlow
controlled networks. It is not possible to forward traffic from
the CMs to the Cable Modem Termination System (CMTS),
thus, no PACKET IN messages will arrive to the Controller.
Finally, the dynamic aspect of an access network in which
users switch on and off their equipment out of the network’s
operator control gives an additional complexity which should
be considered.

Trying to integrate any kind of equipment under an Open-
Flow Control Framework generally implies having on the
bottom a controllable or programmable datapath and on the
top an OpenFlow endpoint.

There are many ways to classify the available datapaths. For
the purpose of this article, a broad classification can take into
account the availability of an Ethernet-aware frame manipu-
lation capability. Programmable switches with an accessible
Board Support Package (BSP), NPU families like [3] or [4]
with a suitable SDK or optimized x86 based boxes with a SDK
like [5] will fit into this first category. Basically, the remaining
networking equipment that can move Ethernet frames but is
not able to manipulate them (like legacy Ethernet switches) or
equipment that just does not use the frame concept (like optical
ROADM, DOCSIS or GPON based architectures) constitute
the second group.

The classic way to solve this problem is through the use of
a Hardware Abstraction Layer (HAL) that offers a northbound
interface that hides different implementation details and reuses
much code when adapted to different hardware platforms.

ALIEN Project proposes a Hardware Abstraction Layer
(HAL) [6] which aims to ”design and implement the required
building blocks for a novel Hardware Abstraction Layer that
can facilitate the unified integration of alien types of network
hardware elements (i.e. network element that do not support
natively OpenFlow)”. This indeed means that both types of
datapath can be managed, as ALIEN HAL includes support for
other kind of technologies like optical ROADM found at core
networks or access network related technologies like GPON
or DOCSIS. ALIEN HAL relies on the eXtensible OpenFlow
DataPath daemon (xDPd) [7] and the Revised OpenFlow
Library (ROFL) [8], which have been considerably extended
in the project, to provide respectively a ”multi-platform, multi
OF version, open-source datapath” which supports ”Network
processors, FPGAs, ASICs.. as well as non-ethernet devices”
and ”OpenFlow support (. . .)to build control applications,

controller frameworks and/or data path elements”.
This paper is organized as follows. Section II presents

the relevant related work and introduces the integration of a
DOCSIS access network into an OpenFlow Control Frame-
work. Section III presents the proposed architecture. Then,
Section IV describes in detail the design of the architecture
whereas Section V introduces the implementation details.
Finally, Section VI and VII present the validation and also
the conclusions and future work.

II. INTEGRATION AND RELATED WORK

This paper presents the experience gained adapting a DOC-
SIS based access network to an OpenFlow Control framework
by using the approach proposed in ALIEN. As a reminder,
the simplest DOCSIS architecture includes a CMTS which is
linked downward to the CM located at the Customer Premises
by a cable based RF distribution system and upward to an
Aggregation Switch (AGS) that gets the traffic from several
CMTSs and connects the whole setup to the Internet.

Additionally, there is a provisioning system sometimes
referred as the DOCSIS Provisioning System (DPS). The DPS
relies on NTP, TFTP and DHCP servers to configure the CMs
and provide them with the correct firmware and configuration
files. Each CM behaviour is determined by the configuration
file, which indicates the equipment operation mode (i.e.,
switch, router or WiFi router), Internet and management
related network configuration and also its QoS configuration,
to cite a few.

It is specially worthmentioning that QoS configuration is of
uttermost importance in access networks due to the bandwidth
ressource sharing. In the case of DOCSIS access networks,
QoS is guaranteed to end-users by means of a unidirectional
transport mechanism called service flow. At the configuration
files of the CM, besides the default pair of Upstream and
Downstream service flows, additional service f lows can be
configured to transport specific services, defined by a set of
QoS parameters and packet classifiers.

There are several approaches to integrate a DOCSIS access
network under an OpenFlow Control Framework. The first two
deal with legacy CMTS based architectures whereas the third
one does not. The first approach relies on having a Controller
which is indeed aware of the particularities of the CMTS and
its DPS and offers a northbound interface tailored to control
and manage them, while offering a southbound OpenFlow-
based interface. This could be in fact, the case 2d referred
in [9]. The second approach makes the CMTS, the CMs, the
DPS and the AGS appear as a wide-area OpenFlow switch by
means of a Proxy that is linked to the OpenFlow Controller.
Again, this can be the case 5b in [9] if the closest Forwarding
Equipment (FE) to the user is indeed the resulting wide-
area OpenFlow switch. Finally, the third one involves a full
OpenFlow aware CMTS.

On the practical side, there are several initiatives, or at
least pointers in the Web. The most visible one [10] was
presented in the Open Networking Summit [11] and intends
to ”Develop a PacketCable PCMM/COPS southbound plugin

and supporting modules to allow the OpenDayLight Controller
to provision CMTS as a network element that manages ser-
vice flows with dynamic QoS”. This approach will give the
possibility to create Service Flows on reactive or proactive
mode and provision them using PCMM. CableLabs has also
published several OpenFlow and SDN related inventions,
particularly, in[12] they propose an hypothetical CMTS that
does have a native OpenFlow control interface that implements
an extension to support different QoS service flows. There is
a reference about a commercial product that could implement
something related to this [13] but no other information is
available.

III. INTEGRATED DOCSIS OPENFLOW ARCHITECTURE

This section describes the architecture designed to integrate
DOCSIS access networks under OpenFlow control. The ob-
jective is to integrate the entire access network as a wide-area
virtual OpenFlow switch. As the CMTS is considered a closed
box without Ethernet manipulation capability which cannot
be extended or reprogrammed, the integration requires using
some helpers to support the OpenFlow switch model abstrac-
tion. The proposal fits into the second category mentioned in
Section II.

A. The resulting Architecture

The Integrated DOCSIS OpenFlow architecture with addi-
tional helpers added is represented in the next figure.Topology

4

OpenFlow
Infraestructure
Controller

Cable
modems

CMTS

Data

OF Aggregation
Switch

OF
Switches

Customer
Premise
Equipment

ALHINP

DPS

Fig. 1. OpenFlow enabled DOCSIS architecture

In this architecture, the AGS, which is OF enabled, is
considered to be part of the access network helper in order
to provide functionalities not supported by DOCSIS. The
proposal also includes OUIs that will help to extend the native
packet classification provided by the DOCSIS traffic classifiers
to a more flexible and fine grained one. As it will be later
explained in section VII, this could not necessarily imply
adding an additional box.

The ALHINP (ALien Hardware INtegration Proxy) is the
component which will interface to an outer Controller and
manage all the components that constitute the wide-area
OpenFlow switch.

The only requirement for the OF AGS regarding OpenFLow
is that it must support OF version 1.1+, because multiple tables

are required to support incoming vlan-tagged traffic from the
clients. Despite the use of multiples tables, the virtual model
reports to the Controller a unique one.

B. ALHINP

ALHINP (ALien Hardware INtegration Proxy) [14], which
is based on ALIEN HAL, is the main component of the
solution. It exposes two northbound interfaces (OF 1.0 and
OF 1.2) and, at the same time, orchestrates and manipulates
all the underlying network devices to make them perform as
an integrated wide-area OpenFlow switch. ALHINP proxy
processes OF messages received from the Controller and
generates specific actions (at DOCSIS configuration and man-
agement level) and, if needed, OF messages to be sent to the
required devices.

The architecture of the proxy is detailed in the next figure:

Orchestrator

OF 1.2
endpoint

Translation

DOCSIS
Interface

OF
DOCSIS

OF 1.0
controller

aggregation
switch

OpenFlow
User InstanceCMTS

Network
model

OF 1.2
endpoint

OF 1.2 endpointOF 1.0 endpoint

OF 1.2
controller

Crossplatform
Hardware
Layer

Hardware
Specific
Part (HSP)

DOCSIS
Driver

Fig. 2. ALHINP architecture detail

1) Orchestrator: The orchestrator is a part of HSP (Hard-
ware Specific Part) of the ALIEN HAL architecture [6]. By
taking information from the network model, it is able to
process the incoming OF messages and also generate and
orchestrate the delivery of new messages, through the suitable
driver, to each device of the network (OF endpoint in case of
interaction with an OpenFlow Controller) or Access network
driver (DOCSIS driver in this case). In this later case, the
mapping between OF flow rule parameters and corresponding
DOCSIS classifier ones are defined.

2) Translator: This module defines the algorithms that
enable the translation between the real topology and the virtual
topology exposed to the Controller. It also controls the VLAN
assignment depending on the information provided by the
network model.

3) Network model: The network model defines the topol-
ogy and how the connection between devices is performed.
It also provides information related to the management of
the network, like the amount of clients supported, CM MAC
listings, etc.

4) DOCSIS Driver: Here, the specific code where the
interaction with the specific network access technology (DOC-
SIS in this case) is defined. As it is expected, a generic,
in relation to the technology, interface is provided. Later,
a translation mechanism converts this generic interface into
specific commands and protocols (specific for CMTS CLI or
SNMP commands).

5) OpenFlow endpoints: These modules implement the
OpenFlow endpoints, which will be in charge of the con-
nection of the northbound interface with the corresponding
Controller or with the OpenFlow devices of the platform. It is
important to note that they maintain the connection status.

IV. DESIGN DETAILS

The present Section describes the design in detail, focusing
on the network boot up, the QoS configuration and the
implementation of the OpenFlow messages.

A. Booting the network up

In DOCSIS access networks, CMs can join or leave the
network asynchronously, resulting in the dynamic appearance
of virtual ports. In these situations, the network reports its new
condition to the ALHINP. This subsection describes how the
internal communication flows involved (CM to provisioning
servers, AGS to ALHINP, OUIs to ALHINP) are detected and
enabled by ALHINP.

When the CMTS is booted up, the RF resources are con-
figured over the RF interface for upstream and downstream
channels. The CMTS is configured to have the Layer 2 Virtual
Private Network (L2VPN) mode enabled. As a result, the CMs
are assigned a unique VLAN VID that CMTS uses to tag the
traffic incoming from a certain CM.

Meanwhile, the AGS connects to the ALHINP (Fig. 3 A2)
as soon as it is available. On the one hand, the ALHINP listens
for connections coming from the AGS and the OpenFLow
User Instances (OUIs). On the other hand, it periodically tries
to connect to the Controller. Depending on the first connection
being established, the process varies.

• If a FEATURES REQUEST message is received from
the Controller during the initial handshake process, but
AGS is not already connected, no (available) ports are
reported on the corresponding reply.

• As soon as the AGS is connected to the ALHINP, its
ports, which are now available, will be reported to the
Controller via PORT STATUS messages.

• If the connection with the AGS was already set up,
the ports will be announced by means of the FEA-
TURES REQUEST message, along with their virtual
identifier, provided by the AGS.

• It is important to note that due to the fact that virtual
ports can appear at any time, if some setting is provided
via a SET CONFIG message to every port in the virtual
wide-area switch, this command should be stored to be
subsequently sent to every new CPE joining the system.

OUI1 CM1

CMTS
OF AGG SWITCH

ALHINP CTRLDPS

DATA

VLAN VID #100
L2VPN map

CM VID
2 150
1 100

OF_OUIOF_AGS
DHCP
NTP
TFTP

Flow Table 0 Flow Table 1

Internal Flows
(DOCSIS, OF) +

DROP

External
Flows

GOTO 1 (External)

Configure AGS with static
FlowEntries

A3
CM Provisioning and L2VPN
configuration by ALHINP

A1

Send new configuration file
with the new QoS
configurationB

AGS connects with the
ALHINP

A2

OUI connects
with the ALHINP

C1

Send pending
OF FlowEntries

C2

Fig. 3. Internal flow required for normal operation of the platform

Once the initial handshake finishes, ALHINP will deploy
some static rules over the AGS (Fig. 3 A3). Those rules are
related to:

1) Detection of DOCSIS provisioning traffic (Fig. 3 A1):
When an unknown CM tries to get the suitable con-
figuration to join the DOCSIS network, traffic must be
detected. In order to apply the L2VPN configuration
in the CMTS referred to that CM -according to the
algorithm set- DHCP is captured and processed by the
ALHINP to obtain the CM MAC address.

2) Detection of OF control-traffic incoming from OUI (Fig.
3 C1): Once the CM setup is finished, its OUI will try
to connect the ALHINP. Detection of this connection is
required to establish an association between its MAC
(and DPID, as OpenFlow standard states that a device’s
MAC should be mapped into the DPID lower bits) and
VLAN VID used for that CM.

3) Default drop rule for all traffic at internal ports without
specific rule.

4) Deploy a GOTO TABLE 1 rule for every packet incom-
ing from any external port of the Aggregation Switch,
as all flow entries deployed in flow-table 0 are related to
internal flows, or they are rules for untagging incoming
traffic from CMs. Flow-table identifier is also abstracted
to OF controller.

B. Configuring QoS over DOCSIS Layer

When a CM joins the DOCSIS access network it must
overcome a provisioning process; a configuration file is down-
loaded by the CM (Fig. 3 B) where the service flows and
the associated traffic classifiers are defined. The evolution of
this system quasi-static QoS configuration mechanism to a
dynamic one based on PCMM is being studied.

C. Connecting OUI to ALHINP

Once the AGS and the client CM are successfully configured
and the control traffic is detected and enabled by the ALHINP,
the OUI will be able to connect with the ALHINP. In turn,
the ALHINP will provide to the OUI the OF configuration
previously sent and stored directed to it.

After loading rules, newly available ports may be reported
as available to controller via PORT STATUS message with
their virtual identifier.

D. PACKET IN management

A PACKET IN message is generated in the switches when
there is no matching rule for a flow or when it is specifically
set via an OUTPORT controller action.

When a PACKET IN is generated due to a flow table
mismatch , if the inport is available to the controller, the inport
field is rewritten. Otherwise it is discarded. If the PACKET IN
has its origin in a rule, specific actions can be taken (e.g. set
a new VLAN over the CMTS).

E. FLOW MOD management

This is one of the most challenging messages to map into
this DPID distributed architecture. The message is analysed to
get the inport from the matching fields and any outport action
present. For each pair of inport and outport, an internal path
is created (when several outport actions are present).

Processing differs depending on in port is wildcarded or
not. If inport is not wildcarded, orchestration can be sim-
plified. When inport is present (not wildcarded) and outport
is OFP CONTROLLER, IN PORT, LOCAL or NONE (not
present), processing of the path can be done in the same way,
that is, inport is translated and a rule is installed at the DPID
associated with the inport. However, if the inport is another
real port of the infrastructures, a path over several DPIDs is
required, as shown in figure 4.

OUI1

OUI2

OUIN

OF
AGS

DOCSIS
Access Network

User 2

User 1

Virtual Port
Physical Port
NetPort

Path 1

Path N

Control

Fig. 4. Path required to support a flow over the network

1) Client to aggregation flow (upstream): First, a flow entry
is installed in the second table of the AGS. The match
is formed by the original match provided by the Con-
troller but, inport is changed to netport (port connected
to the CMTS). It is also added metadata match with
VLAN VID associated with the corresponding CM as
field value. Installed actions are taken from the original
action set, where the outport (virtual) is modified with
equivalent real port id. If some action related to the
QoS must be taken by the DOCSIS network, it will be
configured as a second step. Finally, the flow entry over
the OUI is installed. The new match will be formed by
the original one, modifying the virtual inport with the
real port id. Only an action is performed, and it is just
to send the packet to the network. The vlan tag will be
automatically added by the CMTS.

2) Agregation to Client flow (downstream): The first en-
try is inserted into the OUI, with the original match,

substituting the original inport with the netport (the
one connected to the CM). Actions are taken from
the original action set, but changing the outport with
its real equivalent. The rule installed in the AGS is
installed into the second table. Match is taken from the
original message, but translating the inport. Action set is
formed by push VLAN tag, SET FIELD (VLAN VID)
corresponding to the CM and outport is set to netport.

3) Client to client flow: this case is a mix of upstream and
downstream cases. Flow entry corresponding to the exit
DPID is formed by the original match modifying the
inport by the netport value and applying the original
action set with the outport translated into the real port
identified. The flow entry installed in the AGS only
rewrites the incoming VLAN tag with VLAN associated
with the egress OUI and it sends the packet through the
same interface (outport = inport). Finally, a flow entry
is inserted into the source DPID, with the original match
modified (inport translated) and the action for sending
the packet to the netport.

FLOW DPID_SRC DPID_middle DPID_DST

Client
To

aggregation

match
Original match
! Inport modified

Match (table 1)
original match
+ Metadata = VLAN_VID
+ Inport = netport

Actions:
+outport: netport

Actions:
original actions
+ outport modified

Aggregation
to

Client

Match (table 1)
original match
! Inport modified

match
Original match
! Inport = netport

Actions:
+ Push VLAN
+ Set VLAN (cm_dst)
+ Outport netport

Actions:
original actions
! outport modified

Client
to

Client

match
original match
+ Inport modified

Match (table1)
original match
+ Metadata =
VLAN_VID (cm_src)
+ Inport = netport

match
original match
! inport = netport

Actions:
+ Outport: netport

Actions:
Push VLAN
Set VLAN (cm_dst)
+ outport IN_PORT

Actions:
original actions
! outport modified

TABLE I
PARTIAL FLOW ENTRIES INSTALLATION SUMMARY

Partial flows are sent to DPIDs in the opposite order to the
flow direction, that is, when a flow from a OUI to the AGS
must be installed, the first flow entries to be set belong to
the AGS DPID. Secondly, actions over the DOCSIS network
are applied (if it proceeds) and finally, the flow in the OUI is
installed. This way the packet loss is avoided due to the lack
of rules in any of the devices involved in the path for that
packet.

If inport is not set in the match of a FLOW MOD, messages
must be stored while hard timeout is still valid. In order to
maintain the coherence with the behaviour of an Openflow
switch model. When a new DPID joins the network, the
cached rules are verified to install that rules concerning to
recently connected DPID. The summary in table I describes
all mentioned above.

FLOW MOD with outport = OFP ALL is not implemented
due to its complexity. Implementation would require sending
the same message tagged with each VLAN used in the network
in aggregation, which is an excessive processing.

F. PACKET OUT

PACKET OUT performing is processed directly from the
control plane, by setting the bytes sent to the controller the
maximum possible into the OpenFlow switch PACKET IN
configuration and sending the entire packet to controller.
This way, every packet can be directly sent attached to the
PACKET OUT message .

G. STATS management

Flow entry cache, used for FLOW MOD processing, is also
used when it is required to get data for a certain statistic
request. The simplest way to ask for statistics is by using the
cookie parameter, as a unique flow identifier. But this identifier
is not always correctly by applications running on top of the
controller. Statistics are collected from aggregation, where the
most of the flows are processed

V. IMPLEMENTATION

In order to test the suitability of the presented architecture,
an experimental setup has been deployed as part of the ALIEN
project, consisting on a set of OUIs, a DOCSIS access network
and an OpenFlow AGS.

A. OpenFlow User Instance

As depicted in Figure 1, at this moment several OUIs are
running over CPEs, which are Linux embedded machines that
implement an OpenFlow 1.2 switch based on xDPD [7] and
ROFL [8]. Each CPE is equipped with two Gigabit Ethernet in-
terfaces to communicate with the CMs (as currently OpenFlow
in-band support is not implemented) and additional Ethernet
interfaces used as a user port. These Ethernet interfaces are
connected to the end-user hosts.

B. DOCSIS network

The proposed architecture requires an entirely bridged ac-
cess network because it needs to support L2 circuits estab-
lished between the end-user clients and the servers. As a
consequence, both CMs and CMTS have been configured to
work in bridge mode.

Firstly, the Cisco EPC3825 CMs used at the deployment
have been configured to work in bridge mode by overriding
their default configuration and disabling the WiFi interface
that runs by default on them. Each CM is equipped with four
Ethernet interfaces, where two of them are used to connect
the CM with the OUI (data aggregation + OpenFlow control)
running on the CPE.

Secondly, the CMTS used in the deployment is a Cisco
uBR7246-VXR with a MC16U DOCSIS card (supporting up
to 5 physical upstream links and 1 for downstream). The
operating system that runs in the CMTS is the Cisco iOS
release 12.2 with support for 802.11q and DOCSIS 2.0. In
order to work in bridge mode, the CMTS, which usually works

as a router, encapsulates the traffic of each VM into different
VLANs. With this mechanism, it is possible to identify the
CM that forwarded certain user data.

C. OpenFlow Aggregation Switch

The OpenFlow AGS has been also implemented using
xDPd [7] and ROFL [8]. This software switch runs on a
SR1690WB server with 4 Gigabit Ethernet ports plus a virtual
one, where the provisioning servers are located. The first
Gigabit Ethernet interface is used for both the data exchanged
with the end-user hosts and for the control traffic originated
in the OUIs. The second Gigabit Ethernet interface is used for
the data exchanged with the core network. The third interface
is used for the control-traffic directed to and coming from
the ALHINP exclusively from clients OUIs, and the fourth
interface is for OpenFlow control of the AGS.

D. ALHINP

ALHINP is designed and implemented around the ROFL
0.4 library, which provides basic OpenFLow 1.0 and 1.2
endpoints to interface both switches or controllers. The current
implementation of the ALHINP uses the OpenFlow 1.0/1.2
protocol to establish connection with the controller. However,
the connection to the OpenFlow AGS and the OUIs is done
entirely using OpenFlow 1.2 version. Even ALHINP internally
uses several flow-tables, although only one is announced to the
controller.

It also contains a Command Line Interface (CLI) to config-
ure the equipment of the DOCSIS network as needed. Though
it is not mandatory, the ALHINP runs on on a Linux virtual
machine located at the same server that the OpenFlow AGS.

E. OpenFlow controller

Finally, the OpenFlow controller in charge of the control
of each OUI and the OpenFlow AGSs is Ryu [15]. As in the
case of the ALHINP, the OpenFlow controller also runs on
the same Linux virtual machine, located at the same server of
the OpenFlow AGS. The OpenFlow AGS, ALHINP and the
OpenFlow controller communicate with each other by means
of an internal virtual network.

VI. VALIDATION

In order to test the validity of the proposed architecture, the
experimental setup described in section V has been tested with
the OFTEST conformance test-suite [16] successfully passing
the tests for OF1.0 and basic tests for OF1.2 (groups or any
advanced features are not currently implemented).

Furthermore, the aforementioned experimental setup was
presented at the Future Internet Assembly (FIA2014) that took
place in March of 2014 at Athens.

VII. CONCLUSIONS AND FURTHER WORK

This paper shows that the last mile is no longer a stopper
for deploying flow-aware applications that reach the user
premises. The architecture proposed is able to provide an
unprecedented flexibility in this regard and is able to cope
with the dynamicity of an access network.

The proxy base scheme used in this approach can be
easily deployed over other access networks based on different
technologies, such as GPON. Under this scheme, only a OF-
GPON driver is needed, that will take into account OLT related
configuration issues.

The integration of the OUI in the CM is already being
studied, as CISCO Cable Modems run a version of eCoS
[17], which is an open-source project. This will boost the
deployment of the solution, because no in-home additional
equipment will be needed for an ISP to deploy flow-aware
services.

VIII. ACKNOWLEDGMENTS

This research was partly funded by the Seventh Framework
Programme of the European Commission, through the ALIEN
(317880) project and by the Spanish Ministry of Science under
the A3RAM-NG (AAA in Next Generation Access Networks)
TIN2010-21719-C02-01. The authors want to thank Norberto
Ojinaga and Octavio Alfageme from Euskaltel and Pedro
Ortega from CISCO for their support.

REFERENCES

[1] Gartner Inc., “Hype cycle for networking and communications, 2013,”
Tech. Rep., 2013.

[2] U. Hoelzle, “Open Network Summit - The Google OpenFlow network
is in Production,” April 2012.

[3] Cavium, “OCTEON III CN7XXX Multi-Core MIPS64 Processors,”
2014. [Online]. Available: http://www.cavium.com/OCTEON-III
CN7XXX.html

[4] EZChip, “NP Family of Network Processors,” Jun. 2014. [Online].
Available: http://www.ezchip.com/p np family.htm

[5] INTEL Corp., “Intel R©DPDK: Data Plane Development Kit,” Jun.
2014. [Online]. Available: http://dpdk.org/

[6] ALIEN Project, “ALIEN Hardware Abstraction Layer White Paper,”
http://www.fp7-alien.eu/files/deliverables/ALIEN-HAL-whitepaper.pdf,
2013.

[7] BISDN, “Extensible DataPath daemon (xDPd),” Jun. 2014. [Online].
Available: https://www.codebasin.net/redmine/projects/xdpd/wiki

[8] ——, “Revised OpenFlow Library (ROFL),” Jun. 2014. [Online].
Available: https://www.codebasin.net/redmine/projects/rofl-core/wiki

[9] G. Hampel, M. Steiner, and T. Bu, “Applying software-defined network-
ing to the telecom domain,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2013 IEEE Conference on, April 2013, pp. 133–
138.

[10] Project OpenDayLight, “Packet Cable PCMM,” https://wiki.
opendaylight.org/view/Project Proposals:PacketCablePCMM, 2014.

[11] T. Kee, “Open Network Summit - OpenDaylight In Action at Cable-
Labs,” April 2014.

[12] CableLabs, “DOCSIS Service Flow provisioning via OpenFlow,” 2012.
[Online]. Available: {http://www.cablelabs.com/wp-content/uploads/
2014/04/60421-publish.pdf}

[13] Oliver Solutions, “accessFlowNETM,” Jun. 2014. [Online]. Available:
{http://oliver-solutions.com/accessflowne/}

[14] University of the Basque Country (UPV/EHU), “ALHINP Develoment
Repository,” Jun. 2014. [Online]. Available: https://github.com/i2t/
ALHINP

[15] NTT Corporation, “RYU SDN framework,” Jun. 2014. [Online].
Available: http://osrg.github.io/ryu/

[16] P. FloodLight, “Oftest,” Jun. 2014. [Online]. Available: https://github.
com/floodlight/oftest/blob/master/Detailed Testing Methodology.txt

[17] eCos, “embedded Configurable operating system,” http:
//ecos.sourceware.org/, 2014.

