A Datapath-centric Virtualization Mechanism for
OpenFlow Networks

R. Doriguzzi-Corin, E. Salvadori, M. Gerola
CREATE-NET, Trento, Italy

Email: {rdoriguzzi, esalvadori, mgerola} @create-net.org

Abstract—The adoption of a robust and scalable network
virtualization framework is a key requirement in order to make
the vision of a shareable network infrastructure a reality. To
this aim, one of the most suitable approaches is the one which
takes advantage of the emerging paradigm of Software-Defined
Networking (SDN) and OpenFlow, its de-facto standard. Several
virtualization frameworks have been proposed in the last few
years; however, they are either based on proxy-based solutions
that raises scalability and robustness issues (FlowVisor), or they
rely on a simplified view of the datapath (generally based on
Open vSwitch instances) that have little chances to be adopted
in production network settings. This paper presents a novel
OpenFlow-based network virtualization mechanism exploiting a
recent open-source datapath project named eXtensible Datapath
Daemon (xDPd); the proposed multi-platform datapath is based
on a robust distributed virtualization architecture that is able to
run on multi-version OpenFlow switch network scenarios, has a
minimal overhead from a performance point of view and can be
easily ported on several hardware platforms via xDPd libraries.

Keywords—Network Virtualization, OpenFlow, FlowVisor, Soft-
ware Defined Network

I. INTRODUCTION

One of the most relevant use case scenario for Software
Defined Networks (SDN) is network virtualization [1]. In fact,
the abstraction of node switches in an SDN architecture facili-
tates exposing different views of a physical network to different
controllers. Compared to more traditional virtualization archi-
tectures based on existing techniques such as Virtual Local
Area Network (VLAN), Virtual Routing Forwarding (VRF),
Virtual Private Network (VPN) and Virtual eXtensible Local
Area Network (VXLAN) techniques which provide only partial
network virtualization features, SDN may in fact provide
stronger mechanisms to improve the control of virtual network
instances running on top of a physical topology. Among them,
key features are: strict isolation between virtual networks
in terms of performance and traffic leakage, the possibility
to enhance existing network devices via a software upgrade
that enable virtualization capabilities and lack of dedicated
middleboxes that may introduce administrative overhead and
act as potential single points of failure.

By considering the emerging adoption of an SDN paradigm
at all network segment levels, the vision of a network infras-
tructure that can be safely shared among several administrators
is finally becoming a reality (Infrastructure as a Service,
TaaS). However, there is no common view on how an SDN
network should be virtualized and, in fact, many virtualization
frameworks based on SDN have been proposed recently, each
one of them with their own advantages and disadvantages.

M. Sufié, H. Woesner
BISDN GmbH, Berlin, Germany
Email: {marc.sune, hagen.woesner} @bisdn.de

Thanks to its wide adoption and success, OpenFlow [2]
is the protocol used in most of the SDN deployments and
in which SDN virtualization techniques has been focused on.
Leveraging on OpenFlow protocol, we may envision two major
approaches to introduce network virtualization in an SDN
network: (i) frameworks that leverage on an external proxy
to intercept OpenFlow control messages and assign them to
different controllers according to a specified “flowspace slic-
ing” (e.g. FlowVisor [3] and VeRTIGO [4]); (ii) frameworks
that assume the capability at switch level to instantiate several
instances of OpenFlow virtual switches and then assign them
to different controllers like [5], [6].

The former have been widely adopted in several Future
Internet testbeds such as GENI [7] and OFELIA [8] thanks
to their simplicity and ease of use. However they have several
limitations: (i) the proxy controller constitutes a single point of
failure for the control plane, effectively making it impossible
in case of failure for the north-bound (slice) controllers to
interact with the datapaths; (ii) there is an inherent overhead
due to the fact that PacketIn events, as well as other control
messages, have to be encapsulated/decapsulated twice and
transmitted/received via a socket; (iii) their implementation is
very much OpenFlow 1.0 centric, partially due to their internal
architecture but also due to the known fact that slicing in multi-
table datapaths supporting apply-actions is a complex problem
to solve.

The latter have been recently proposed to overcome these
limitations and to define a network virtualization mechanism
that can effectively provide the key features identified before.
However, almost all these alternative architectures have been
proposing solutions based on Open vSwitch (OvS) [9], a
virtual software switch that is being heavily used in data-center
“server-centric” scenarios but has little applicability to carrier-
grade switches.

In this paper a novel OpenFlow-based network virtualiza-
tion framework has been proposed that overthrows FlowVisor
limitations and leverages on a recent open-source datapath
project named eXtensible Datapath Daemon (xDPd) [10] avail-
able for several hardware platforms and targeting carrier-grade
SDN applications. The proposed framework is based on a
robust distributed virtualization architecture that is able to run
on a multi-version OpenFlow switch network scenarios via a
minimal overhead, both from a performance and an operational
point of view.

The rest of the paper is organized as follows. Section II
describes the motivations behind this work and reviews the

related literature and existing tools. Section III discusses the
architectural details of the proposed approach. In Section IV
the results of some experimental sessions are given. Directions
for future work and conclusions are drawn in Sections V and
VI respectively.

II. MOTIVATIONS AND RELATED WORK

Among the network virtualization frameworks alternative
to FlowVisor, the following two are probably the most rel-
evant for our work. In [6] Sonkoly et al. have proposed a
framework that is capable of managing multiple instances
of OpenFlow switches with different forwarding capabilities
and OpenFlow versions, as well as to run and configure con-
trollers designed for controlling a virtual network. The whole
architecture assumes Open vSwitch (OvS) [9] as the basic
pillar, an assumption that may be quite limiting in hardware
switches scenarios. In the proposed architecture each virtual
switch instance is associated to a single virtual network and
to a single controller somehow limiting the flexibility of the
network instantiation. Furthermore no performance measures
are provided in terms of additional overhead introduced over
the operation of the physical and virtual networks. In their
proposal in [11], Skoldstrom et al. have focused their attention
on the encapsulation techniques that may be adopted in a
distributed virtualization framework to enforce isolation of vir-
tual networks, by including a thoroughly analysis of overhead
introduced by VLAN versus PWE (pseudo-wire emulation)
mechanisms. However, the architecture is not OpenFlow ver-
sion agnostic and, moreover, no performance measures are
provided to measure the overall additional overhead of the
proposed mechanism.

In order to tackle a robust and scalable SDN-based network
virtualization mechanism, we believe there is still much room
for improvements. Our decision was to investigate in more
detail the potential improvements that may be introduced at the
datapath level. As part of the activities performed within the
ALIEN FP7 project [12], an evaluation of the different existing
open-source OpenFlow datapaths to be extended was done.
The main candidates evaluated were Open vSwitch (OvS) and
the eXtensible Datapath daemon (xDPd) [10].

OvS is a production-quality virtual software switch that
was originally built to replace the Linux kernel bridge with a
more flexible software switch. OvS has support for OpenFlow
1.0, but the support for 1.1, 1.2 and 1.3.2 versions is still
under development [13]'. Although it was originally conceived
to replace the Linux kernel bridge, it has also been used
to port some hardware switches (ASICs), despite its internal
architecture and code complexity have proven to make it a
considerably difficult task.

The eXtensible Datapath Daemon, in its turn, is a rela-
tively young open-source datapath project that targets the easy
adoption of SDN/OpenFlow to a wide variety of different
software? and hardware platforms, as well as an extensible
design to support new OpenFlow versions and network pro-
tocols. It has to be said though, that the code-base is not yet

LAt the time of writing, the most recent release of OvS is the 2.1.2, while
full support for OpenFlow 1.1, 1.2 and 1.3 is planned with the release of OvS
version 2.3.0.

2In theory xDPd could control the Open vSwitch kernel module, however
there is no known ongoing project targeting this support.

as mature as the OvS’s one. xDPd can be also considered
a framework for building datapath elements, rather than a
single datapath. Its architecture proposes a unified control
(e.g. OpenFlow) and management, confining the platform
specific code in the platform driver. The currently available
open-source platform support includes a user-space software
GNU/Linux implementation and support for NetFPGA 10G
cards. There is also closed-source platform support for some
Broadcom chipsets, OCTEON Network Processors or a DPDK
accelerated software datapath among others.

In our network virtualization architecture the xDPd data-
path platform was selected due to its architecture specially
tailored to support multiple HW/SW platforms, but also due
to the current stable support of OF1.0 and 1.2° as well as its
more comprehensible and easy to extend software code-base.

As it will be described in more detail in Section III, when
compared to [11] and [6], the proposed architecture shares the
advantage of being distributed and thus inherently more robust
to potential failures. It is also based on a software solution that
minimizes the additional OPEX/CAPEX needed in order to be
adopted in the network. However compared to those works,
since it leverages on xDPd libraries, it has much better chances
to be applied on several hardware switching platforms.

III. DATAPATH VIRTUALIZATION ARCHITECTURE

The distributed virtualization architecture presented in this
paper is composed of two macro-blocks (see Fig. 1): (i)
the Virtualization Agent (VA) which resides on OpenFlow-
enabled switches and (ii) the so-called Virtualization Agent
Orchestrator (VAO) which is an entity (stand-alone process
or plugin for a Network Management System) in charge of
configuring and monitoring the VA instances running on the
network devices.

The VAO is a JSON-RPC client which is used to send con-
figuration commands (createSlice, deleteSlice, addFlowSpace
etc.) to the VA instances. On the northbound, the VAO exposes
a JSON-RPC interface that allows slice configurations to be
applied/updated either from a Network Management System
(see Fig. 1) or via command-line. In addition, this interface is
compatible with existing control software (in particular with
FOAM [14)).

The VA has been designed with the following goals: (i)
avoid Single Point of Failures (SPoF) through a distributed
slicing architecture, (ii) provide an OpenFlow version agnostic
slicing mechanism and (iii) minimize the latency overhead
caused by the slicing operations.

Distributed slicing. As shown in Fig. 1, the proposed
architecture is designed to avoid SPoFs. A failure of the VAO,
the only centralized element in the architecture, can only
prevent the instantiation of new slices without affecting the
ones already in operation. Other approaches like [3] or [4]
introduce an additional layer on the control channel to obtain
the virtualization of the network resources. A failure of that
layer would bring down all the running slices.

Protocol agnostic. The VA operates between the control
communication module and the forwarding plane of the device.

3Support of OF1.3.2 is under development

Network
Management

JSON-RPC

Tl /X
Switch Switch

Fig. 1. The network architecture. The Virtualization Agent (VA) runs on
OpenFlow-enabled nodes while the Virtualization Agent Orchestrator (VAO)
is the process in charge of configuring/monitoring the agents.

VA | Switch

For this reason, it does not need to inspect the control protocol
to perform the slicing process therefore it can, in principle,
support any control protocol (even different from OpenFlow).

Latency overhead. The operations needed to obtain the
virtualization of the resources have a cost in terms of addi-
tional latency on actions that cross between the control and
the forwarding planes. The overhead depends on how the
virtualization mechanism is implemented but, as shown by
the evaluation results reported in Section IV, other elements
can contribute to the total latency. In particular, differently
from FlowVisor, the Virtualization Agent neither inspects the
OpenFlow protocol nor needs to establish additional TLS
connections.

A. The slicing mechanism

In OpenFlow, for each incoming flow which does not have
an entry in the switch flow table, a Packetln event is generated
and sent to the controller through the control channel. The
controller, in turn, can answer with a FlowMod message to
modify the flow tables of the switch. The workflow in Fig. 2
shows how the VA performs the slicing process (dashed box)
for these messages. PacketOut and other messages are handled
in a similar way. For each new flow, the fields of its header
are matched against the flowspaces assigned to the configured
slices. If the VA finds a match, the header is sent to the related
OpenFlow endpoint which builds the PacketIn message by
using the protocol version used for the communication with
the controller. Vice-versa, if no correspondences are found,
the VA tells the lower layers to drop the flow.

On the other side, the VA applies the slicing policies to the
OpenFlow messages sent by the controller to the switch. In or-
der to keep the VA internal processes protocol version agnostic,
the VA intercepts the actions and the related flowmatch after
they are decapsulated from the OpenFlow message* and before

4XDPd uses the ROFL-common C++ representation of the FlowMod which
is version agnostic [15]

Process done!

been sent to the
controller?

FlowMod msg

V

Extract the msg payload
(actions and match)

Create the Packetin
message and sent it
to the right controller

A L
V

Get action list

Does the
packet header belong
to a slice?

permitied? <] More actions?
7
No Yes Q\

Get match
Match the header
against the slice table %7

Intersect match with
the slice's flowspace

7

The msg is sent
to the lower layers
/\

@ Process done!

Fig. 2. The slicing process workflows for new flows and FlowMod messages
(surrounded by the dashed box).

The header is sent to the
Virtualization Agent

they are inserted into the switch’s flow table. The actions are
checked against the controller’s flowspace (i.e. the VA checks
if the controller is trying to control traffic outside its flowspace)
and the match is intersected with the flowspace. The latter
operation ensures that the actions are only applied to the flows
matching the flowspace assigned to the controller, i.e. the VA
prevents interference among different slices.

B. The datapath software architecture

A basic introduction of xDPd’s software architecture is
presented on this section in order to better understand the
design principles followed for the VA component, however
an in-depth explanation of xDPd’s architecture is out of the
scope of this paper. xDPd is a UNIX process that runs in
the forwarding device, or as close as the forwarding device

as possible, like embedded systems next to ASICs. xDPd
architecture is constituted by two pieces as depicted in Fig. 3;
the Control and Management Module (CMM) and the platform
driver or Forwarding Module (FM) which interface each other
via an abstract API (AFA).

Plugin A H Plugin B H Plugin C H

Control and Management Module (CMM)

Abstraction Forwarding APl (AFA)

Forwarding module (FM)/Platform driver

Fig. 3. The xDPd software architecture.

The CMM is shared between all the different platforms
and encapsulates the platform independent code dealing with
device or system management, monitoring and control plane
(OpenFlow). On the management side, going top to bottom
on Fig. 3, the CMM encompasses the plugin modules’, a
unified abstraction of the physical platform (fundamentally
ports, either physical or virtual) and Logical Switch Instances
(LSIs). The plugin modules can steer the configuration of LSIs
(e.g. define the OpenFlow controller), including the attaching
of platform ports to it. Examples of management plugins are
NetConf/OFConfig agents or a file-based configuration reader.
On the control plane side, the LSI abstraction encapsulates
the OpenFlow endpoint and all the necessary control plane
functionality, as well as having a handle to manage the
forwarding state down in the platform driver. The control plane
functionality can be further extended, like in the case of the
VA, or even replaced, by control plane plugins.

The Platform driver or Forwarding Module contains the
code that is platform specific and that is strongly tight to
the particular forwarding device under control. The FM is in
charge of presenting the device in an abstracted way to the
CMM, including ports, device capabilities... and it does the
basic management of the platform. For hardware forwarding
devices, the Forwarding Module is in charge of updating and
maintaining the forwarding state of the ASIC, whereas in a
software forwarding device it may also include the packet I/O
routines.

xDPd uses extensively a set of OpenFlow libraries called
the Revised OpenFlow library (ROFL)[15]. ROFL includes
libraries to build OF endpoints or agents, including OF pro-
tocol parsers and other utilities called ROFL-common, used

SPlugins are modules pluggable at compile time

extensively on the CMM. ROFL includes as well other libraries
to help building datapaths, most notably ROFL-pipeline, which
implements the data-model of the forwarding state of a multi-
datapath (multi-LSI) forwarding device and the pipeline packet
processing for software switches.

C. Implementation

As mentioned in III-B, the Virtualization Agent has been
implemented as a plugin for xDPd. Differently from other
initiatives that are based on OvS (like the one proposed in [6]),
our framework does not instantiate a virtual switch for each
new slice. Instead, multiple LSIs (the virtual switches in the
xDPd terminology) are only required when different versions
of the protocol are used on the same physical switch. On the
other hand, multiple controllers using the same version of the
protocol are handled by the VA through the same OpenFlow
endpoint encapsulated within a single LSI.

i

LSl

VA

LSl

T OF endpoint r— OF 1.2

OF 1.2

Plugins Logical Switch Instances

i

Control and Management Module (CMM)

[xDPd's lower layers J

Fig. 4. The Virtualization Agent (VA) is the component in charge of the
slicing mechanism and is implemented as a plugin for xDPd.

Referring to Fig. 4, two LSIs are instantiated to support
protocol versions 1.0 and 1.2, while the VA interacts with
the OpenFlow endpoints to perform the flowspace slicing
operations. To maintain these operations OpenFlow version
agnostic, the VA is queried by the endpoints before creating
the OpenFlow messages directed to the controller and after the
payload is decapsulated from the OpenFlow messages coming
from the controller (as described in the workflow in Fig. 2).

IV. EVALUATION AND RESULTS

A prototype of the network virtualization architecture de-
scribed in Section III has been tested in laboratory from a
performance viewpoint. The tests have been performed focus-
ing on the latency overhead introduced on the control channel
by the VA operations for the most commonly used OpenFlow
messages, i.e. PacketIns. For these messages, we measured the
“new flow time”, namely the latency between sending a new
flow to the switch and receiving the corresponding PacketIn
message on the controller. Scalability considerations are also
discussed in the last part of this Section.

The performance metric considered in our evaluation is
the difference of latency overhead introduced by the VA and
FlowVisor (currently the reference virtualization architecture
for OpenFlow networks). With this purpose, we considered
three different scenarios: (i) direct connection between a xDPd-
enabled switch and the controller, (ii) same scenario with the

VA module enabled within xDPd and (iii) FlowVisor placed
between xDPd (with the VA module switched off) and the
controller (see also the logical paths A, B and C in Fig. 5
respectively).

PC1
xDPd
—————————————————— Controller
VA oot
Traffic
| P generator
Fig. 5. Evaluation setup. A, B and C indicate the three test configurations

considered in our evaluation. The arrows represent the direction of the traffic
between two network interfaces.

Evaluation setup. The evaluation setup, represented in Fig.
5, was composed of two commodity desktop PCs (labeled
as PC1, PC2) and one server-class machine (SRV) connected
to each other via Ethernet cables. PC1 acted as OpenFlow-
enabled switch by running an instance of xDPd plus the
Virtualization Agent. PC2 hosted a modified version of the
Ryu controller [16] that included a network traffic generator
function and that was configured with version 1.0 of the
OpenFlow protocol to meet the FlowVisor’s requirements.
Finally, an instance of the latest release of FlowVisor® ran on
SRV, a quad-core Intel Xeon 3.1GHz system equipped with
8GB of RAM memory (an equivalent system is currently used
to host FlowVisor to slice the CREATE-NET’s OFELIA island

[8D.

Latency overhead comparison. To measure the latency
overhead introduced on the control channel by the VA and
FlowVisor, we performed three test sessions, one for the
scenario A, one for B and one for C.

In each session, the interface labeled with P/ in Fig. 5
was used to force the switch to generate Packetln messages
for the controller by sending as much packets as possible.
More precisely, the controller’s internal traffic generator was
configured to: (i) send a single packet to the switch PCI, (ii)
wait for a reply (the PacketIn message) on the interface P2,
(iii) record the elapsed time between events (i) and (ii) and
then (iv) repeat this process as quickly as possible.

Fig. 6 shows the CDF plots of the three test sessions.

Scalability. Optimally, the VA should be able to efficiently
support as many virtual networks as xDPd and the physical
substrate can manage. But, due to the overhead on the control
channel caused by slicing operations described before in this
paper, it might not be possible to accommodate so many of
them in practice. To evaluate how the VA scales to large
numbers of instantiated virtual networks, we repeated the
scenario B of the latency overhead test with the VA configured
with 100, 500, 1000, 2000, 5000 and 10000 flowspace rules.
We forced the VA to match each PacketIn against all the
entries in the flowspaces list (the worst case in a real-work

61.4.0 at the time of writing

—
xDPd —o—

0.9 ;(f/. . xDPd + VA —=— |
> 08 xDPd + FV —a— _|
5 o7 iy ¢
§ 0.6 f # xDPd avg. latency: 0.477ms _ |
& ’ ;f 4 xDPd + VA avg. latency: 0.577ms
o 05 i xDPd + FV avg. latency: 1.006ms]
5 04 i
g 03 4
5 u 4
O 02 |

o i

' 5
0.1 1 10 100
New flow latency (ms)
Fig. 6. Cumulative probability of the latency for new flow messages.
3
& 25
E
5 2]
5]
g 15
[0
g 1
[
>
< 05 §
R S 1y ®
S & &
Number of flowspace rules
Fig. 7. Average latency for new flow messages on varying the number of

flowspace rules.

deployment) before sending the message to the controller. The
results are reported in Fig. 7.

In conclusion, the values reported in Fig. 6 show that
even if the VA performed better that Flow Visor, the overhead
introduced by the VA with PacketIn messages (about 18%
on average) cannot be ignored, especially in deployments
with high rates of new flows. In such conditions, we believe
that controllers should proactively install flow entries on the
switches as much as possible in order to avoid these additional
latencies.

From the plot in Fig. 6 we can also notice a relevant
difference in performance between the VA and FlowVisor
(0.429ms on average). This gap is likely caused by specific
processes that only FlowVisor introduces on the control chan-
nel: the OpenFlow protocol inspection and one additional TLS
(Transport Layer Security) connection between the switch and
the controller. In our specific setup, for each run of the PacketIn
test, the control channel was involved only once to transmit the
Packetln message from the switch to the controller. However,
in realistic deployments a new flow is forwarded towards the
destination only after the Packetln has been replied by the
controller either with a FlowMod or with a PacketOut message.
Therefore, in realistic conditions the gap between the VA and
FlowVisor could be even more significant for the performance
of the network.

Results of the scalability test (summarized in Fig. 7) show
that the latency overhead on the control channel is fairly
constant up to 500 flowspace rules and that it scales linearly
from 500 to 10000 rules. Although these results were obtained
by forcing the VA to scan the whole flowspace list (in practice,

the lookup process would stop when the first match is found),
there is still room for optimization, including the replacement
of the flowtable list with hashmap-like data structures.

V. FUTURE WORK

The internal architecture of the VA and the way it interacts
with the rest of the pieces of xDPd is still under constant evolu-
tion, for both performance and functional reasons. In particular,
from the functional viewpoint, the architecture proposed in this
work lacks some critical components to enforce bandwidth and
flowspace isolation between slices.

Flowspace isolation permits two or more slices to share part
of the flowspace and simultaneously prevent them from inter-
fering with each other’s traffic. We plan to achieve flowspace
isolation at the Virtualization Agent Orchestrator level, where
specific policies could prevent the definition/instantiation of a
virtual topology whose flowspaces overlap with ones already
in operation.

Bandwidth isolation allows the reservation of a portion of
the nominal capacity of a link to a certain slice. L.e., a slice
configured for X% of the bandwidth will always receive at
least X% and possibly more if the link is under-utilized. In
this case, we plan to operate at Virtualization Agent level by
leveraging the xDPd mechanism for QoS enforcing.

VI. CONCLUSIONS

The increasing adoption of a Software-Defined Network
(SDN) paradigm in all network segments is finally making
real the vision of a network infrastructure that can be safely
shared among several service providers via advanced network
virtualization techniques. OpenFlow is the protocol used in
most of the virtualization mechanisms proposed in the SDN lit-
erature. FlowVisor [3], the most popular network virtualization
framework for OpenFlow networks, has several limitations:
it may act as single point of failure; it is strictly based on
OpenFlow v1.0; it introduces a non-negligible overhead that
may introduce severe scalability issues.

In this paper a novel OpenFlow-based network virtualiza-
tion mechanism has been proposed that overthrows Flow Visor
limitations and leverages on a recent open-source datapath
project named eXtensible Datapath Daemon (xDPd) [10]. This
datapath engine is available for several hardware platforms and
is designed to target carrier-grade SDN applications.

The proposed framework is based on a robust distributed
virtualization architecture that is able to run on multi-version
OpenFlow switch network scenarios. It also introduces the pos-
sibility to have a virtual switch being controlled by more than

one controller thus increasing the flexibility when instantiating
virtual networks to different controllers. A set of experiments
in a realistic setting demonstrates that the proposed architecture
introduces a marginal overhead from a performance point
of view, which suggests it could be smoothly applied in a
production environment.

ACKNOWLEDGEMENTS

The authors wish to thank Daniel Depaoli for his valuable
support in the implementation and testing phase. This work
is partially supported by the EU FP7 funded project ALIEN
[12].

REFERENCES

[1] M. Mendonca, B. N. Astuto, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” in Submitted to IEEE Commu-
nications Surveys and Tutorials, June 2013.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 32, no. 2, pp. 69-74, April 2008.

[3] R. Sherwood et al., “Can the production network be the testbed?” in
Proc. of USENIX OSDI, Canada, 4-6 Oct. 2010.

[4] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and
E. Salvadori, “Vertigo: Network virtualization and beyond,” in Software
Defined Networking (EWSDN), 2012 European Workshop on, 2012, pp.
24-29.

[5] P. Skoldstrom and K. Yedavalli, “Network virtualization and resource

allocation in openflow-based wide area networks,” in Communications
(ICC), 2012 IEEE International Conference on, 2012, pp. 6622—6626.

[6] B. Sonkoly, A. Gulyas, F. Nemeth, J. Czentye, K. Kurucz, B. Novak,
and G. Vaszkun, “Openflow virtualization framework with advanced ca-
pabilities,” in Software Defined Networking (EWSDN), 2012 European
Workshop on, 2012, pp. 18-23.

[7] “Global Environment for
http://www.geni.net/.

[8] “OFELIA FP7 project,” http://www. fp7-ofelia.eu.
[9] “Open vSwitch website,” http://openvswitch.org/.
[10] “The eXtensible Datapath daemon (xDPd),” http://www.xdpd.org/.

[11] P. Skoldstrom and W. John, “Implementation and evaluation of a carrier-
grade openflow virtualization scheme,” in Software Defined Networking
(EWSDN), 2013 European Workshop on, 2013, pp. 75-80.

[12] “ALIEN FP7 project,” http://www.fp7-alien.eu.

[13] “OpenFlow 1.1+ support in Open
http://openvswitch.org/development/openflow-1-x-plan/.

[14] “FOAM,” https://openflow.stanford.edu/display/FOAM/Home.
[15] “ROFL,” https://www.codebasin.net/redmine/projects/rofl-core/.
[16] “Ryu SDN framework,” http://osrg.github.com/ryu/.

Network Innovations (GENI),”

vSwitch,”

