
Hardware Abstraction Layer as an SDN-enabler for non-

OpenFlow network equipment

B. Belter, D. Parniewicz, Ł. Ogrodowczyk, A.

Binczewski, M. Stroiński

Poznan Supercomputing and Networking Center

ul. Noskowskiego 10, 61-704 Poznań, Poland

V. Fuentes, J. Matias, M. Huarte, E. Jacob

University of the Basque Country

Alameda Urquijo s/n - 48013 Bilbao, Spain

Abstract—This paper describes an experimentally-tested

approach towards programmability for legacy network

elements in the software-defined networking architecture. As

OpenFlow is a leading control-plane protocol enabling SDN in

modern networks, yet not all equipment is compatible with this

framework. This problem is addressed in ALIEN, the FP7

research project, where Hardware Abstraction Layer (HAL)

for non-OpenFlow capable devices is introduced. This paper

describes outcomes of the project, and specifically, gives a set

of examples of the successful implementation of OpenFlow

through the HAL on ‘alien’ devices.

Keywords—OpenFlow; Software Defined Networking;

Programmability; Hardware Abstraction Layer

I. INTRODUCTION

Hardware abstraction mechanisms are well known tools

in operating systems. Unified and standardized routines

allow an easy integration of various devices and hide the

internal complexity of the hardware. This concept maps

very well to the concept of SDN [1] and the Network

Operating System [2]. The ALIEN project [3] provides an

architecture and implementation of the Hardware

Abstraction Layer for network equipment for a seamless

integration of non-OpenFlow devices with the OpenFlow-

based Network Operating System, realized with OpenFlow

Controllers [4].

The concept of the HAL has been widely discussed in

several papers [5][6]. This paper consequently focuses on

specific implementations of the HAL on non-OpenFlow

network hardware.

II. HARDWARE THEMES

The following hardware themes have been identified by

the project to cluster network devices in several groups

exposing similar features and behaviour:

• X86-based packet processing devices: this group

comprises general purpose network devices that perform

packet handling in software.

• Programmable network processors: this group

refers to network devices which allow their data plane to be

programmed to perform packet processing.

• Lightpath devices: since the OpenFlow protocol

is limited to an Ethernet-like abstraction, for optical devices

such as reconfigurable optical add-drop multiplexer

(ROADM) systems, the abstraction layer must be adapted

to meet the OpenFlow extension requirements to support

circuit-switched networking.

• Point to multi-point access networks: for devices

such as those based on standards like Gigabit Ethernet

Passive Optical Network (GEPON) and Data Over Cable

Service Interface Specification (DOCSIS), with

deployments based on "head" and "tails" topologies, some

kind of orchestration is necessary for exposing several

devices as a single OpenFlow-enabled "device" through

HAL.

Each of these four groups has different constraints and

imposes various implementation challenges which have

been explained in detail in several publications [7][8].

III. IMPLEMENTATION OF THE HAL

This section discusses implementation details of the
HAL developments made on different categories of network
equipment. Due to the paper’s size limits, only
programmable network processors and point to multi-point
equipment are presented.

A. EZappliance (Programmable Network Processor)

Programmable Network Platforms represent a set of
network equipment containing a re-programmable hardware
unit (NPU or FPGA) that can be adapted to a wide range of
network processing tasks (i.e. packet switching, routing,
network monitoring, firewall protection, deep packet
inspection, load balancing, etc.). These platforms allow for
expressing packet processing control/service logic, using a
programming language, in the form of compiled source code
which can be implemented on a single hardware unit.

The heart of the EZappliance platform (Fig. 1) is the
EZchip NP-3 network processor, a fully programmable chip
which enables flexible parsing, classification, packet header
manipulation and switching of pass through packets. The
NP-3 processor is accompanied with a standard CPU
foreseen for the deployment of control and management
plane functionalities. It was used to deploy both Cross-
Hardware Platform Layer (CHPL) and Hardware Specific
Layer (HSL), as specified in the HAL architecture.

 Fig. 1. HAL adaptation for EZappliance network processor platform

The HSL for EZappliance devices supports discovery
and translation functionalities. The discovery functionality is
based on automatic retrieval of information about all data
plane ports, along with the corresponding attributes and
status. As EZappliance is a standalone device, topology
discovery is not required (for the same reason, the HSL for
EZappliance does not include the orchestrator functionality).

The most complex part of the HSL is the translation
functionality which transforms OpenFlow-based AFA
messages into memory structures located within the NP-3
network processor. The NP-3 memory structures are
accessed via the EZdriver provided by EZchip. The
semantics used for the EZappliance memory structures is
quite similar to OpenFlow. That is, the memory contains a
structure with flow entries but the syntax is mostly different:
proprietary binary encoding of packet matching and actions.
Translation in the HSL is stateless.

B. DOCSIS (Point to Multi-Point Network equipment)

In general, point to multi-point devices consist of a
"head-end" which communicates with several "tail-end"
devices, usually through broadcast means with some
multiplexing that allows the devices to know which traffic is
intended for them. This approach is very common in access
technologies.

The DOCSIS platform (Fig. 2) comprises three main
elements: the CMTS, the cable, and the cable-modems
(CMs). The CMTS is the head-end and "intelligent" part,
which determines the use of the shared media by the CMs.
The CMTS must be configured in the bridge mode (i.e.
TLAN or L2VPN) to be compatible with OpenFlow
abstractions. The cable is the shared media (coaxial) between
the CMTS and several CMs. Finally, the CMs are the tails of
the system located at the subscriber's location.

Since the DOCSIS platform is closed, a direct
programming of the devices cannot be achieved, hence the
control is only possible through vendor-supported standard
interfaces. In principle, this limits the integration of DOCSIS
under an OpenFlow interface. However, by adding the
OpenFlow User Instance (OUI) and aggregation switch
(AGS) in the picture (i.e. as helper boxes), it is possible to

orchestrate the whole system to overcome these limitations
and implement a fully compatible solution. As a result, the
ALHINP (ALien HAL Integrating Network Proxy) performs
the proper abstraction from the whole system by sitting (in
the control plane) between the set of network devices and the
OpenFlow controller. This proxy is based on AFA, since the
actual data plane remains outside the DOCSIS proxy.

The HSL for DOCSIS implements the discovery,
orchestration and translation functionalities. The discovery
component provides information each time a new CM is
connected to the system. As a result, ALHINP dynamically
updates the virtual ports exposed to the controller, since each
CM is abstracted as a new virtual port of the virtual
OpenFlow switch. The orchestration component enables the
coordination of multiple hardware components (i.e. OUI,
CMs, CMTS and AGS) so they act as a single device.

IV. CONCLUSIONS

This article reports on the implementation details of the
ALIEN Hardware Abstraction Layer on different hardware
groups to enable OpenFlow processing on specific network
equipment. The abstract part of the HAL is out of scope of
this paper and reported in other articles ([5][6]), while the
emphasis here is on the hardware-specific part (Hardware
Specific Layer, HSL) and its implementation on
EZappliance and DOCSIS.

The HSL implementation has to be carried out for each
underlying hardware platform and, sometimes, it may even
vary from device to device within the same network platform
category. Therefore, depending on the hardware architecture
of the underlying device, the HSL has to be implemented
accordingly in order to offer the functionality described in
the HAL specification.

Design choices, implementation issues and lessons
learned are not reported in this article. Anyone willing to
create a HAL for other hardware is advised to read [5] and
[6], where specific implementation details have been
provided.

ACKNOWLEDGMENT

This work was conducted within the framework of the
FP7 ALIEN project, which is partially funded by the
Commission of the European Union under grant agreement
no. 317880.

REFERENCES

[1] K. Kirkpatrick "Software-defined networking."
Commun. ACM 56.9 (2013): 16-19.

[2] N. Gude, "NOX: towards an operating system for
networks." ACM SIGCOMM Computer
Communication Review 38.3 (2008): 105-110.

[3] ALIEN Project Webstie: http://www.fp7-alien.eu/

[4] N. McKeown, "OpenFlow: enabling innovation in
campus networks." ACM SIGCOMM Computer
Communication Review 38.2 (2008): 69-74.

[5] D. Parniewicz, "Design and Implementation of an
OpenFlow Hardware Abstraction Layer", Proc.
SIGCOMM DCC 2014, Chicago, USA

[6] Ł. Ogrodowczyk, “Hardware Abstraction Layer for
Non-OpenFlow Capable Devices”, Proc. TNC 2014,
May 2014, Dublin, Ireland.

[7] Richard G. Clegg, “Hardware platforms and switching
constraints”, ALIEN Project deliverable, 2013

[8] R. Rajewski, “Specification of Hardware Specific
Parts”, ALIEN Project deliverable, 2013

Fig. 2. HAL adaptation DOCSIS system

http://www.fp7-alien.eu/

