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Abstract—This paper describes an experimentally-tested 

approach towards programmability for legacy network 

elements in the  software-defined networking architecture. As 

OpenFlow is a leading control-plane protocol enabling SDN in 

modern networks, yet not all equipment is compatible with this 

framework. This problem is addressed in ALIEN, the FP7 

research project, where Hardware Abstraction Layer (HAL) 

for non-OpenFlow capable devices is introduced. This paper 

describes outcomes of the project, and specifically, gives a set 

of examples of the successful implementation of OpenFlow 

through the HAL on ‘alien’ devices. 
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I. INTRODUCTION 

Hardware abstraction mechanisms are well known tools 

in operating systems. Unified and standardized routines 

allow an easy integration of various devices and hide the 

internal complexity of the hardware. This concept maps 

very well to the concept of SDN [1] and the Network 

Operating System [2]. The ALIEN project [3] provides an 

architecture and implementation of the Hardware 

Abstraction Layer for network equipment for a seamless 

integration of non-OpenFlow devices with the OpenFlow-

based Network Operating System, realized with OpenFlow 

Controllers [4]. 

The concept of the HAL has been widely discussed in 

several papers [5][6]. This paper consequently focuses on 

specific implementations of the HAL on non-OpenFlow 

network hardware. 

II. HARDWARE THEMES 

The following hardware themes have been identified by 

the project to cluster network devices in several groups 

exposing similar features and behaviour: 

• X86-based packet processing devices: this group 

comprises general purpose network devices that perform 

packet handling in software.  

• Programmable network processors: this group 

refers to network devices which allow their data plane to be 

programmed to perform packet processing.  

• Lightpath devices: since the OpenFlow protocol 

is limited to an Ethernet-like abstraction, for optical devices 

such as reconfigurable optical add-drop multiplexer 

(ROADM) systems, the abstraction layer must be adapted 

to meet the OpenFlow extension requirements to support 

circuit-switched networking. 

• Point to multi-point access networks: for devices 

such as those based on standards like Gigabit Ethernet 

Passive Optical Network (GEPON) and Data Over Cable 

Service Interface Specification (DOCSIS), with 

deployments based on "head" and "tails" topologies, some 

kind of orchestration is necessary for exposing several 

devices as a single OpenFlow-enabled "device" through 

HAL. 

Each of these four groups has different constraints and 

imposes various implementation challenges which have 

been explained in detail in several publications [7][8]. 

III. IMPLEMENTATION OF THE HAL 

This section discusses implementation details of the 
HAL developments made on different categories of network 
equipment. Due to the paper’s size limits, only 
programmable network processors and point to multi-point 
equipment are presented. 

A. EZappliance (Programmable Network Processor) 

Programmable Network Platforms represent a set of 
network equipment containing a re-programmable hardware 
unit (NPU or FPGA) that can be adapted to a wide range of 
network processing tasks (i.e. packet switching, routing, 
network monitoring, firewall protection, deep packet 
inspection, load balancing, etc.). These platforms allow for 
expressing packet processing control/service logic, using a 
programming language, in the form of compiled source code 
which can be implemented on a single hardware unit. 

The heart of the EZappliance platform (Fig. 1) is the 
EZchip NP-3 network processor, a fully programmable chip 
which enables flexible parsing, classification, packet header 
manipulation and switching of pass through packets. The 
NP-3 processor is accompanied with a standard CPU 
foreseen for the deployment of control and management 
plane functionalities. It was used to deploy both Cross-
Hardware Platform Layer (CHPL) and Hardware Specific 
Layer (HSL), as specified in the HAL architecture. 

 

 Fig.  1. HAL adaptation for EZappliance network processor platform 



The HSL for EZappliance devices supports discovery 
and translation functionalities. The discovery functionality is 
based on automatic retrieval of information about all data 
plane ports, along with the corresponding attributes and 
status. As EZappliance is a standalone device, topology 
discovery is not required (for the same reason, the HSL for 
EZappliance does not include the orchestrator functionality). 

The most complex part of the HSL is the  translation 
functionality which transforms OpenFlow-based AFA 
messages into memory structures located within the NP-3 
network processor. The NP-3 memory structures are 
accessed via the EZdriver provided by EZchip. The 
semantics used for the EZappliance memory structures is 
quite similar to OpenFlow. That is, the memory contains a 
structure with flow entries but the syntax is mostly different: 
proprietary binary encoding of packet matching and actions. 
Translation in the HSL is stateless. 

B. DOCSIS (Point to Multi-Point Network equipment) 

In general, point to multi-point devices consist of a 
"head-end" which communicates with several "tail-end" 
devices, usually through broadcast means with some 
multiplexing that allows the devices to know which traffic is 
intended for them. This approach is very common in access 
technologies.  

The DOCSIS platform (Fig. 2) comprises three main 
elements: the CMTS, the cable, and the cable-modems 
(CMs). The CMTS is the head-end and "intelligent" part, 
which determines the use of the shared media by the CMs. 
The CMTS must be configured in the bridge mode (i.e. 
TLAN or L2VPN) to be compatible with OpenFlow 
abstractions. The cable is the shared media (coaxial) between 
the CMTS and several CMs. Finally, the CMs are the tails of 
the system located at the subscriber's location.  

 

 

Since the DOCSIS platform is closed, a direct 
programming of the devices cannot be achieved, hence the 
control is only possible through vendor-supported standard 
interfaces. In principle, this limits the integration of DOCSIS 
under an OpenFlow interface. However, by adding the 
OpenFlow User Instance (OUI) and aggregation switch 
(AGS) in the picture (i.e. as helper boxes), it is possible to 

orchestrate the whole system to overcome these limitations 
and implement a fully compatible solution. As a result, the 
ALHINP (ALien HAL Integrating Network Proxy) performs 
the proper abstraction from the whole system by sitting (in 
the control plane) between the set of network devices and the 
OpenFlow controller. This proxy is based on AFA, since the 
actual data plane remains outside the DOCSIS proxy. 

The HSL for DOCSIS implements the discovery, 
orchestration and translation functionalities. The discovery 
component provides information each time a new CM is 
connected to the system. As a result, ALHINP dynamically 
updates the virtual ports exposed to the controller, since each 
CM is abstracted as a new virtual port of the virtual 
OpenFlow switch. The orchestration component enables the 
coordination of multiple hardware components (i.e. OUI, 
CMs, CMTS and AGS) so they act as a single device. 

IV. CONCLUSIONS 

This article reports on the implementation details of the 
ALIEN Hardware Abstraction Layer on different hardware 
groups to enable OpenFlow processing on specific network 
equipment. The abstract part of the HAL is out of scope of 
this paper and reported in other articles ([5][6]), while the 
emphasis here is on the hardware-specific part (Hardware 
Specific Layer, HSL) and its implementation on 
EZappliance and DOCSIS.  

The HSL implementation has to be carried out for each 
underlying hardware platform and, sometimes, it may even 
vary from device to device within the same network platform 
category. Therefore, depending on the hardware architecture 
of the underlying device, the HSL has to be implemented 
accordingly in order to offer the functionality described in 
the HAL specification. 

Design choices, implementation issues and lessons 
learned are not reported in this article. Anyone willing to 
create a HAL for other hardware is advised to read [5] and 
[6], where specific implementation details have been 
provided. 
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Fig.  2. HAL adaptation DOCSIS system 

http://www.fp7-alien.eu/

