
1

Programmable Abstraction of Datapath
Advanced Programmability of Heterogeneous Datapath Elements through

Hardware Abstraction

Bartosz Belter, Artur Binczewski, Krzysztof

Dombek, Artur Juszczyk, Łukasz

Ogrodowczyk, Damian Parniewicz, Maciej

Stroiński

Poznan Supercomputing and Networking Center

Poland

{bartosz.belter, artur, kdombek, juszczyk,

lukaszog, damianp, stroins} at man.poznan.pl

Iwo Olszewski

Independent researcher

Poland

ict at iwolszewski.pl

Abstract— Despite continuous developments in this area,

Software Defined Networking (SDN) still seeks for a flexible

way of defining a network device behaviour. The control plane

needs to be able to fully utilize growing capabilities of modern

networking hardware and its diversity. In this paper we

propose a new hardware abstraction for various network

devices (network processors, optical devices and access

devices). The first goal of this proposal is to expose advanced

programmability capabilities of network processors and

software switches. The second goal of our proposal is to extend

the concept of the network node programmability by giving a

possibility to dynamically check capabilities supported by a

particular network device. The third goal of this paper is to

introduce programming language which use new-defined API

to Programmable Abstraction of Datapath (PAD) for different

kind of network devices. The presented solution ensures

therefore flexibility and adaptability of the new programmable

functions to specific requirements of a device. The proposed

solution creates a unified way of controlling and configuring a

variety of families of network devices from optical switches to

x86-based appliances.

Keywords— SDN; OpenFlow; hardware abstraction; forwarding

plane; Programmable Abstraction of Datapath;

I. INTRODUCTION

Open Flow [1] is foreseen as a successful hardware
abstraction, however some research projects have already
identified several limitations of the current OpenFlow
specification, e.g. ALIEN [2][3]. We believe capabilities of
modern networking hardware are too heavily restricted by the
OpenFlow abstract device model and there is still a need for
more elastic and powerful solution. In this paper we would
like to address the following limitations of OpenFlow:

 Lack of the switch autonomous capabilities (e.g.
MAC learning, NAT port allocation for a new flow)
causing heavy usage of OpenFlow packet-in
messages which affects the scalability of current
OpenFlow solutions

 Lack of possibility for generic packet modifications
(e.g. adding/removing protocol headers which could

be used, i.e., for generating ARP and ICMP
responses or implementing new protocols)

 Tight coupling to current network protocols which
make it hard to introduce Future Internet
revolutionary solutions (e.g. for Named Data
Networking)

 More and more network protocols are foreseen to be
covered by OpenFlow control which results in a field
explosion in OpenFlow specification (tip: big sets of
protocol fields are very hard to be packed in the
limited sizes of available Ternary Content-
Addressable Memory memories - TCAMs).

Taking into account all the above mentioned limitations
and drawbacks of available technologies we propose a new
approach, which aims to:

i) expose capabilities of network processors through a
simple data plane forwarding model applicable for various
types of networking hardware with very diverse capabilities
(i.e.: programmable network processors, CPUs, optical
devices, GEPON, DOCSIS), and

ii) create a library-based interface for managing and
controlling data plane protocols and forwarding functions.

Related work. The ideal packet forwarding hardware
characteristics have been introduced and explained in [4].
Our solution, as a hardware interface that completely hides
details of a real hardware beneath, tries to follow these
guidelines. Moreover, the approach proposed in this paper
strongly leverages on the work done by research teams
working on the P4 language [5] and POF [6] which both
provide solutions for datapath programmability. However,
the P4 language does not focus on specific details of the
datapath forwarding model, additionally, all P4 device
configuration must be provided at once, before the device
goes to operation. The POF solution becomes less optimal
when more protocol options (i.e.: VLAN, MPLS tags, etc)
must be handled and for each possible option a new match
entry must be added. Both P4 and POF solutions assumes
also packet-oriented devices. The ALIEN Hardware

2

Abstraction Layer (HAL) [7] with its AFA interface aims to
support diverse hardware types but is designed only for
OpenFlow 1.x protocol. OF-DPA [8] implements the
abstraction mechanisms specifically designed for Broadcom
Ethernet switches and does not support deep programmability
of datapath elements. Fig. 1 presents possible relations
between the PAD concept and solutions already available in
the research community. P4 or HAL AFA may use the PAD
API library for accessing the hardware.

Fig. 1. The Programmable Abstraction of Datapath in in relation with other

works in this area

In this paper we introduce Programmable Abstraction of
Datapath (PAD), a hardware abstraction (programming
model) for data plane elements. The PAD allows
programming of datapath behaviour using generic byte
operations, defining protocol headers and providing function
definitions. Our solution includes also a system for reporting
device capabilities in order to provide unified support for
diversity of network devices. The PAD is not an extension or
generalization of OpenFlow 1.x. The proposal elaborated in
this paper derives functionalities exposed by the data plane
hardware, not focusing on requirements exposed by the
control plane, which continuously evolves, and trying to meet
overall objectives of the SDN paradigms.

The remainder of this paper is organized as follows. In
Section 2 the abstract model of datapath is described.
Section 3 describes the API that provides an interface for
managing and controlling hardware hidden behind the
abstraction. Section 4 provides an overall description and
examples of programming languages used for protocol and
function definitions. In Section 5, we present how our
solution can be parameterized to abstract datapath elements,
e.g. network processors or optical switches.

II. PROGRAMMABLE ABSTRACTION OF DATAPATH

The forwarding abstraction is a model of network
device’s processing mechanism. The solution proposed in
this paper, Programmable Abstraction of Datapath (PAD),
comes from the fact that all packet network devices perform
similar steps during packet processing: reading packet
headers (parsing), making forwarding decisions based on a
current configuration (searching), performing necessary
actions (modifying and forwarding). This observation has

been used as an inspiration for the PAD network device
abstraction presented on Fig. 2.

The PAD architecture is composed of several functional
components, including ports, search engines, search
structures, an execution engine and forwarding functions.
Within the PAD, a packet may be processed several times
through all these blocks. A packet received from the ingress
port is bonded with metadata and passed to the search engine.
After the successful search, a packet metadata and search
result is passed to the execution engine. A search result
contains a function name that will be executed on a packet.
At the final stage the packet is passed to the egress port. In
most cases, packet processing may run several passes through
the PAD using a loopback logical port.

The PAD can be used also for controlling network
devices which do not operate on packets (i.e.: optical
switches). In this case, the PAD is processing only metadata
filled with information, in example, about input port and
wavelength of the signal. Matching operations, performed
within search engine, are applied on keys composed of
metadata fields. Then, the forwarding functions cannot
contain packet-oriented instructions but use other (i.e.:
optical specific) instructions.

The port in the PAD can be either physical or logical.
Physical ports represent physical interfaces of a specific
network device. Logical ports are parts of a device
abstraction model and are not co-related with any entity on a
physical network device (however, particular PAD
implementations can use some physical entities to implement
this functionality). The loopback logical port is a
unidirectional port that interconnects egress and ingress sides
of the PAD and allows for multi pass packet processing. A
controller’s logical port is a bidirectional port that allows for
transmission of the processed packet to and from the
controller through the northbound interface. Each port
(physical or logical) can have a number of sub-ports (e.g.
representing different channels on a single optical interface or
different SSIDs on a wireless interface).

The search engine is a logical module that performs
search operations on search structures. The search key is
created from parsed fields from a network packet and
metadata (i.e. an ingress port and a sub-port number). The
search result is a name of the function defined in the
execution engine and packet processing will start with a call
of this function.

Each PAD implementation has to support at least one
search structure. The number of supported search structures
in the PAD model is not restricted. The search structure
number 0 is always used for the first pass of the packet
processing. Structure numbers for next passes are inserted in
a packet metadata and sent together with a packet through the
loopback port. In each pass only one search structure can be
used. By default, each structure should be a ternary search
structure (i.e. support masking of specific bits in a key).
Some PAD implementations can additionally support a
definition of exact match search structures (i.e. structures
without masking possibility). Search structures are defined
by their ID number and a structure of a key. The key can be

3

composed of generic “fields” (e.g. an ingress port number, first 6 bytes and 4 bytes starting from byte 12) or previously

Fig. 2. PAD forwarding element abstraction

defined protocol fields (e.g. an ingress port number, a
destination mac address, ethertype and vlan tag, if exists).
Both possibilities can be combined in a single structure
definition.

The execution engine executes (interprets) functions,
which are sets of hardware independent instructions, and
translate instructions into hardware-specific actions.
Functions declared in execution engine can be called from
the body of other functions. The first executed function for a
given packet is the one passed from the search structure. A
processed frame can be modified here (some devices, such as
optical, could not support this feature). In most cases, the
processing should finally result in a transmission of a
processed data packet to the egress port.

III. THE PAD API

A northbound interface of the PAD allows controlling the
network device behaviour. The PAD’s northbound interface
functionalities can be classified into three functional groups:

Datapath Capabilities - this group of operations allows
for information retrieving about capabilities which are
supported by a specific hardware. Each PAD instance can
implement a certain set of the datapath functionalities. This
part of the northbound interface is be used for getting
information about search structures limitations and available
instruction set before search structures are configured and
functions declarations will be installed. More information
about datapath capabilities exposed by the PAD could be
found in section 5 of the paper.

Datapath Management - this part of the interface allows
for managing search structures, functions and defining
network protocols. New search structures can be defined with

a unique ID and a key description. The management part of
this API defines rules of network device operations. The full
configuration of a device will require several invocations of
appropriate commands. However, the device should not be
able to operate with incoherent and incomplete configuration.
For this reason, all operations from this part of the API have
to be committed in a single, atomic operation to take effect.
The PAD implementation accumulates all changes, prepares
the new configuration and loads it into the hardware after the
commit command is executed with minimal possible
interruption on the actual traffic processing. Some
management operations, e.g. adding a new function can be
theoretically performed without affecting the network device
operation. The management part in the API could be
extended with additional operations allowing such
modifications without stopping the datapath and committing
changes. This set of operations, available in the run-time, is
optional and supported only by certain PAD
implementations.

Datapath Control - This part of the PAD interface allow
for adding and removing of entries in defined search
structures. In most cases, first two parts of the PAD API are
used before the packet processing starts. i.e. the PAD user
retrieves device capabilities, configures search structures,
uploads functions and then starts the packet processing
routines. The control part of the interface, in opposite, is
used during the entire time of the device operation, up to
many thousands times per second depending on the
application.

The PAD API is designed to be very generic and
transparently handle network protocol and function
definitions which decouple the PAD API with protocol and
function specifications methods. The PAD API methods (see

4

TABLE I.) use textual coding of parameters containing, e.g:
a string representation of protocol definitions.

TABLE I. PAD API METHODS FOR ANSI-C

API

group

PAD API function Function description

Capabil

ities

char*

get_all_capablities()

Returns a string containing

comma-separated list of

supported capabilities in the

datapath

char*

get_capability(char*

capability_name)

Returns a string containing a

capability value or empty

string when no such

capability.

char* get_basic_instructions() Return a string containing

comma-separated list of basic

platform instructions.

Manage

ment

bool replace_protocols(char*

protocols_spec)

Returns true if network

protocols specification where

successfully installed in the

datapath

bool add_protocol(char*

protocol_spec)

Returns true if a network

protocols where successfully

updated with provided

protocol specification

bool remove_protocol(char*

protocol_name)
Returns true if a given

protocol knowledge was

successfully removed from

the datapath

bool add_structure(

uint8_t id, char* key, uint32_t

size)

Returns true if a search

structure with a given key

schema and total number of

entries were allocated within

the search engine.

bool remove_structure(uint

id)

bool remove_all_structures()

Returns true if a given search

structure (or all structures)

were deleted in the search

engine.

bool add_function(

char* name,

char* definition)

Returns true if a function with

a given name and definition

were successfully

added/updated in the

execution engine.

bool remove_function(char*

name)

bool remove_all_functions()

Return true if a function with

a given name (or all

functions) was removed from

the execution engine.

bool commit_configuration() Return true if the PAD

configuration is consistent

and the datapath was

initialized.

Control uint8 add_entry(

uint8_t structure_id, uint64_t

key,

uint64_t mask,

char* result)

Return ‘1’ if key, mask and

result values were added

successfully as a search entry

to a given search structure. If

key already exist then entry

result value is replaced and

function returns code ‘2’. A

result contains both

forwarding function name as

all parameters values required

by the function.

bool remove_entry(

uint8_t structure_id, uint64_t

key,

uint64_t mask)

Return true if a search entry

containing given key and

mask were removed from a

given search structure.

IV. FORWARDING FUNCTIONS AND NETWORK

PROTOCOLS PROGRAMMING

The PAD API requires the use of some kind of
forwarding function declarations and protocol definitions
programming. These two applications create very different
requirements and therefore we propose the use of two
different languages.

The programming language is used to define operations
performed by the execution engine. Sets of operations are
loaded into the program memory as named functions. For
each packet, one or more functions are executed.

The primary goal of this language is to allow developers
to modify packet in any way including removing existing
packet and creating a new one. For this reason the language
has to provide wide but specific capabilities that can be easily
extended using supported capabilities mechanism.

Key features of this language are:

 Conditional statements and loops

 Fixed-point variables

 Arithmetical and logical operations

 Bitwise operations

 Remove, insert and modify any byte in the packet

 Checksum computation

 Send packet to output port

 Add/delete an entry to/from search structure

In case of implementations that support data plane
network protocol definition capability, all defined protocol
fields names are also available in the programming language
and can be used within search keys and inside functions
bodies. All fields that already exist in the packet header can
be accessed as regular variables. New empty structure of the
protocol header can be inserted into any place in the packet.

The network protocol definition language allows
programmers to introduce new data plane network protocols
to a network device. Without this feature, the entire packet is
seen only as an array of bytes that can be accessed only by its
index. The definition of the protocol header consists of fields
names, order and sizes as well as information about protocol
encapsulation. Protocol encapsulation explains how a given
protocol header is linked to other headers, e.g. value
‘0x86DD’ of “Type” field in Ethernet header means that the
next header will be IPv6.

This feature allows using specific header fields in search
structures or functions definitions regardless of their actual
position in the packet. For example, the IP destination
address can be used in routing table search structure
definition regardless of possibility of VLAN header
occurrence that will change the location of the IP header in
the packet. In implementations that do not support protocol
definition, the programmer needs to consider all possible
locations of given field in packet and handle them
independently. The protocol definition language can be

5

defined as a new solution or can be based on existing
solutions like NetPDL [9] or P4 [5] languages.

Both languages (i.e.: NetPDL and P4) are still intensively
considered regarding capabilities to express a broader scope
of data plane protocols headers. However, we would like to
present PAD API anyway by an example use shown in
LISTING I. This example covers programming booth the
search engine and the execution engine with usage of Python
wrapper library of the PAD API presented in Table 1. This
code snippet presents example implementation of a simple
label switching router using generic byte operations.
Switching is based on a value of 4 byte long field inserted
just after the Ethernet header and announced by the Ethertype
value of ‘0x88b5’. The function call in the line 4 defines a
search structure with the key of the length of 6 bytes
composed from ethertype value (2 bytes) and 4 following
bytes. The string variable defined in the line 8 contains a
definition of a simple function that sends a packet to the
output port given as a parameter. A value of port parameter is
provided by search result. Line 12 adds the previously
defined function to the execution engine. The function
defined in the line 14 removes the ether type and the tag
value before invoking previously defined function ‘send_to’.
The function defined in the line 21 adds a new tag header to
the processed packet and sends them to the output port. The
whole new configuration is installed on the datapath with
commit command in the line 29. Lines 31, 33 and 35 add
entries to the defined search structure that respectively
switches packets with the tag value ‘0x17’ to the port 7,
switches packets with the tag value ‘0x18’ to the port 8 and
removes tags from the packet with the tag value ‘0x11’
before sending it to the port 1.

LISTING I. EXAMPLE OF USE of PAD API in Python

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

from pad import add_structure, add_function,
 add_entry, commit_configuration

add_structure(id=0,
 key=“””2 bytes from byte[12].bit[0],
 4 bytes from byte[14].bit[0]”””)

function = “””
 send_to(port){
 send_to_physical(port);
 }”””
add_function(definition=function)

function = “””
 decapsulate_and_send(port){
 remove(from=byte[12].bit[0], length=6B);
 send_to(port);
 }”””
add_function(definition=function)

function = “””
 encapsulate_and_send(tag, port){
 insert(after=byte[12].bit[0], value=0x88b5);
 insert(after=byte[14].bit[0], value=tag);
 send_to(port);
 }”””
add_function(definition=function)

commit_configuration()

add_entry(structure_id=0, key=0x88b500000017,

32:
33:
34:
35:
36:
37:

 mask=0xffffffffffff, result=”send_to(7)“)
add_entry(structure_id=0, key=0x88b500000018,
 mask=0xffffffffffff, result=”send_to(8)“)
add_entry(structure_id=0, key=0x88b500000011,
 mask=0xffffffffff,
 result=”decapsulate_and_send(1)“)

V. DEVICE CAPABILITES

Different network devices support different capabilities.
Not all of hardware platforms allow manipulating forwarded
frames and packets. In particular, optical devices allow only
circuit switching in the forwarding plane. Narrow set of
network devices mostly based on network processors and
programmable entities like FPGAs provide an access to the
hardware datapath through APIs. Heterogeneity of network
devices and forwarding paradigms causes problems with a
definition of the unified abstraction for all types of network
devices [10]. The ALIEN project introduces Hardware
Abstraction Layer [2][7] which hides the complexity of
various network devices and exposes an OpenFlow endpoint
for devices that don’t support this protocol natively.
However, this abstraction is oriented on OpenFlow only, with
some additional limitations causing non-use of heterogeneity
of devices’ capabilities.

The PAD which exposes capabilities of different
hardware platforms makes the concept of hardware
abstraction more general and unified. The possibility of using
only one chosen part of PAD functionality ensures elasticity
of the presented solution. Each physical device is expected
to support only a part of PAD’s functionalities that is
appropriate for the device. A well-defined system of
supported capabilities will allow implementing the PAD on
top of optical switches as well as network processor
appliances without limiting their capabilities.

The key parameters included in capabilities definition:

- Maximal number of search structures

- Maximal length of a key in search structure

- Support for exact matches

- Supported instruction sets

- Support for protocol definitions

For example an optical switch can be presented by the
following capabilities (because of the nature of the traffic
forwarding at the optical level):

- Only metadata in search structure key (without direct
access to frame)

- Sending the frame to port (without frame
modification)

- Dropping the frame

Programmable Ethernet switches with full access to the
frame support:

- Compound keys in search structure enable matching
to different frame header fields as well as frame

6

metadata with counters, ingress port identification
etc.

- Sending the frame to port

- Modifications of the frame

- Dropping the frame

In the case of closed platforms or platforms with limited
access to datapath, it is possible to implement the PAD model
which uses an available management interface to the device
only (e.g. CLI, SNMP). Because of different capabilities of
network devices not all functions in execution engine will be
installed in the PAD as well as entries in search structures
will be adjusted to supported device capabilities.

VI. SUMMARY AND NEXT STEPS

The PAD internal architecture presented in section 2
should not be considered as a complete set of software
modules for implementation on each hardware platform.
Each implementation will provide functional equivalent of
presented abstraction using the software architecture suitable
for the given hardware platform. The presented solution can
be seen as a primary interface for all interactions with
datapath of hardware devices. As an open hardware
abstraction layer that can be used by local control plane
processes as well as by remote network controllers using
middleware protocols.

OpenFlow, the most popular SDN protocol, can be
implemented on top of the PAD as a middleware for
compatibility with existing controllers. Such device
configuration will present to the controller only
functionalities supported by OF, but, by using standardized
hardware interface, will be open for replacing OpenFlow
implementation with a new one, overcoming current
limitation of the OF protocol.

The locally only available PAD API requires a
middleware protocol to be used by a remote network
controller, however it can be also used by a local control
software. In such configuration, the PAD can be used as a
hardware abstraction layer for implementation of legacy
network protocols like STP or OSPF.

The PAD has been designed with ease of use in mind, but
still is relatively easy to implement on most of hardware
architectures. The PAD architecture can be directly converted
into software modules which makes implementation
straightforward on C language programmed network
processor platforms like Cavium Octeon, Broadcom
XLS/XLR/XLP or x86 supported by Intel DPDK. On EZchip
NP based devices the code generated for parsers can be
deployed in TOPparse and TOPsearch and can be used for all
searches. Compiled actions can be deployed on TOPmodify
and also partially in TOPresolve if additional instructions are
needed.

Some considerations have been made in this paper
regarding implementation of the PAD prototype model but
there are still open issues that should be solved. A list of
hardware capabilities for all different network platforms must
be gathered. Regarding the methods of actions definitions,

we must decide if we would like to enhance our current
design or switch to other propositions like P4 language. We
must also address very important aspects of both packet
processing and control operation performance which could
different for particular platform implementation.
Performance of function executions during packet processing
should be better with pre-compilation of the instructions than
on-fly interpretation. Performance of compiled
implementation will heavily depend of quality of the
compiler. From control plane point of view, most of time
consuming configuration tasks will be performed once after
device start. Adding and deleting entries will be implemented
as a population of defined data structures which should be as
fast as in the case of OpenFlow 1.x. Adding new functions (if
implementation supports this feature in runtime) will be fast
with interpreted implementations and will take some time for
compilation in compiled implementations.

The PAD architecture proposed in this paper enables
generic abstraction of different kind of network devices. The
PAD model is not restricted only to Ethernet-based
protocols. An opportunity to change the network device
behaviour (also on the fly) based on a well-defined “network
program” is a flexible solution which allows changing
frames, packets or datagrams handling on the fly. The ability
of fine-grained definition of the forwarding behaviour of
network equipment gives new opportunities towards the SDN
concept.

ACKNOWLEDGMENTS

This work has been conducted within the framework of

the EU-FP7 ALIEN project [3], which is partially funded

by the European Commission under grant agreement no.

317880.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:

Enabling Innovation in Campus Networks,” ACM SIGCOMM

Computer Communication Review, vol. 38, April 2008.

[2] (2012) ALIEN project, “HAL whitepaper” [Online]:
http://www.fp7-alien.eu/files/deliverables/ALIEN-HAL-
whitepaper.pdf.

[3] (2014), FP7 ALIEN project, website, http://www.fp7-alien.eu

[4] M. Casado et al., “Rethinking Packet Forwarding Hardware”,

ACM SIGCOMM HotNets Workshop, Nov. 2008.

[5] Pat Bosshart at al. “Programming Protocol-Independent Packet

Processors”, arXiv:1312.1719v3 preprint, May 2014.
[6] H. Song, “Protocol-oblivious forwarding: Unleash the power of

SDN through a future-proof forwarding plane”, ACM SIGCOMM

HotSDN Workshop, Aug. 2013.

[7] Ł. Ogrodowczyk et al., “Hardware Abstraction Layer for non-
OpenFlow capable devices”, Terena Conference, 2014, Dublin;
https://tnc2014.terena.org/getfile/1047.

[8] (2014) Broadcom, “OpenFlow Data Plane Abstraction (OF-

DPA)” [Online]; http://www.broadcom.com/collateral/pb/OF-

DPA-PB100-R.pdf.

[9] M. Baldi F. Risso, "NetPDL: An Extensible XML Based

Language for Packet Header Description", Computer Networks,

vol. 50, no. 5, pp. 688-706, 2006.

[10] Deliverable D3.1 from ALIEN PF7 project, “Hardware platforms

and switching constraints”; http://fp7-

alien.eu/files/deliverables/D3.1-ALIEN-final.pdf.

http://www.fp7-alien.eu/files/deliverables/ALIEN-HAL-whitepaper.pdf
http://www.fp7-alien.eu/files/deliverables/ALIEN-HAL-whitepaper.pdf
http://www.fp7-alien.eu/
https://tnc2014.terena.org/getfile/1047
http://www.broadcom.com/collateral/pb/OF-DPA-PB100-R.pdf
http://www.broadcom.com/collateral/pb/OF-DPA-PB100-R.pdf
http://fp7-alien.eu/files/deliverables/D3.1-ALIEN-final.pdf
http://fp7-alien.eu/files/deliverables/D3.1-ALIEN-final.pdf

