
Software Defined Networking
for access networks

Richard G. Clegg, Imperial College, London

Co authors: Jason Spencer,Raul Landa, Manoj Thakur, John Mitchell, Miguel Rio

Talk to EWSDN 2014

(Prepared using LATEX and beamer.)



Introduction

SDN for access equipment

Access equipment: relatively modern, slow replacement cycles,
involves end-user equipment, not typically programmable. How can
it be made OpenFlow ready.

Equipment cannot be programmed (custom chip, not
documented).

Typically access equipment has a “head end” device and tail
end consumer premesis units.

Replacing it is difficult, but want the benefits of OpenFlow at
this part of the network.



The GEPON (Gigabit Ethernet Passive Optical Network)



Getting OpenFlow on GEPON

Want to make whole system of switch, OLT, splitter ONU
present as single massively distributed OF switch.

Problem with making GEPON OpenFlow capable:

Proprietary device, no knowledge of chips or drivers.
Not intended as programmable.
ONU cheap low power consumer unit.

Solution:

Make use of fact that OLT usually needs switch before it
anyway.
Give OLT Open Flow capable front end switch (xdpd on
NetFPGA).
OLT can switch to ONU on VLANs – e.g. VLAN 10 goes to
ONU 4.
Use a mapping to VLANs in lower level open flow switch.
Controller sees only higher level abstract switch.



Mapping physical ports and tags

Create a virtual OpenFlow switch with one port for the
head-end device and one port for each tail-end device.

Each virtual port on the virtual OpenFlow switch maps to
exactly one physical port and possibly a tag.

Here we talk in terms of VLAN tag but any alteration that OF
can match on will do.

P1,T1 ↔ V1

P1,T2 ↔ V2

P1,T3 ↔ V3

P1,T4 ↔ V4

P1,T5 ↔ V5

P2 ↔ V6



The GEPON with OpenFlow

Note – approach is generic – could work for many access
devices.

Another approach would be to surround the device with OF
switches.



Design in detail

Target is OF 1.0

For simplicity we chose to implement OpenFlow 1.0 but there is no
reason we could not implement later versions with the same
approach.

Front end switch

Any OpenFlow capable switch can sit at the front end of the OLT.
This is easier for an ISP to replace than any other part of the
system.

Hardware abstraction layer

We abstract the hardware using xCPd – the eXtensible Control
Path daemon, written to translate the control path.



eXtensible Control Path daemon xCPd

Based on xDPd and ROFL libraries.

Translates OpenFlow messages to/from switch to/from
controller.

E.g. Action output a packet on port 4 may becomes actions
to tag the packet with VLAN 10 and output to port 2.

E.g. A PacketIn from port 2 with VLAN 10 becomes an
untagged packet from port 4.

ROFL libraries

The Revised OpenFlow Library abstracts OpenFlow concepts as
C++ objects and methods. Not your standard OFC northbound –
targetted at data path implementations or building new controllers.
https://github.com/bisdn/rofl-core

https://github.com/bisdn/rofl-core


xCPd in detail

Read and store a mapping of real ports and vlan tags to
virtual ports.

Store all flowmods on the switch in their ‘original’ and
‘translated’ forms so translated flowmods can be deleted.

Connect to the switch and to the OFC as transparently as
possible.

Forward messages from switch to OFC (suitably translated).

Forward messages from OFC to switch (suitably translated).

Where translation not possible provide way to get messages to
access device to implement.



The packet’s big adventure



Results

Unit tests

We pass them – lots of them. Oftest a standard but often not easy
to work with http://www.projectfloodlight.org/oftest/

Oftest basic tests passed, many other action and match tests
pass.

Sometimes underlying switch does not pass oftest tests.

Sometimes test failure is to do with assumptions oftest makes
about timing not a real failure.

Sometimes test failes for “wrong” reason – e.g. oftest
PacketIn test also test VLAN tags.

http://www.projectfloodlight.org/oftest/


OFtest basic tests

Test Result
Echo Passes using xCPd

EchoWithData Passes using xCPd

PacketIn Fails due to VLAN tag (would pass with QinQ)

PacketInBC Passes using xCPd

PacketOut Passes using xCPd port mapping

PacketOutMC Passes using xCPd port mapping

FlowStatsGet Passes using xCPd port mapping

TableStatsGet Passes using xCPd

DescStatsGet Passes using xCPd

FlowMod Passes using xCPd port mapping

PortConfigMod Requires hardware specific code

PCMErr Requires hardware specific code

BadMessage Passes using xCPd

TableModConfig Passes using xCPd



OF 1.0 commands by status

Aim was not to get a single GEPON working but to provide a
method for any sufficient access device.

OF1.0 commands split into four groups:
1 Automatic pass: Hello, EchoRequest, EchoReply, Vendor,

FeaturesRequest, FeaturesReply, BarrierRequest, BarrierReply,
GetConfigRequest, GetConfigReply, SetConfig, PortStatus and
QueueGetConfigReply.

2 Require translation: PacketIn, PacketOut,
StatsRequest/StatsReply (for a FlowMod), Error and
FlowRemoved.

3 Require hardware specific code: PortMod,
StatsRequest/StatsReply (for a Port) and
QueueGetConfigRequest.

Can never work without QinQ – Action VLAN tag/untag,
match on VLAN (with Q-in-Q these should just work).



Porting to your device (requirements for new
hardware/software)

All traffic between tail-end devices must travel via the
head-end OF enabled switch.

The OpenFlow switch can add the tag and match any packet
against that tag in combination with the real underlying port.

The head-end device can add the tag to any packet entering
the head-end device from a tail end device.

The head-end device can route the packet according to the
tag and remove the tag.

Without Q-in-Q then you cannot use all of the tag mechanism
that is used to signal.

New equipment: replace head-end switch with OF capable
switch.

New software: Run xCPd, probably on same machien where
OFC runs.



Porting to your device (code you need to write)

Code to query the head-end device for port statistics specific
to the tail-end devices – without this port stats are for
underlying physical port (combines several virtual ports).

Code which can modify the links to the end user devices as
required by the OpenFlow PortMod command.

Queue commands either:
1 Ensure that a user configuring the queue on the underlying

hardware also gives xCPd the same information.
2 Write code to query the head-end device about its queue

configurations (this is optional in the OF 1.0 specification).

Possible extra: Add automatic detection of new tail-end
devices as new ports.



Conclusions: Lessons learned

Implementing the whole protocol is hard.

OpenFlow commands in this approach group to:

Just work – no changes.
Work with tags – VLAN tags added/removed.
Just don’t work – need hardware commands.
Will never work – VLAN tags when no QinQ available.

ROFL is an excellent place to start if you need more than
“just another OpenFlow northbound”.
https://github.com/bisdn/rofl-core.

Provides sensible abstractions not just for messages to/from
controller.

OpenFlow is actually really fun to play with despite the pain.

More details in EWSDN paper, preprint:
http://www.richardclegg.org/access_sdn.

Our code is available:
https://github.com/richardclegg/xcpd

https://github.com/bisdn/rofl-core
http://www.richardclegg.org/access_sdn
https://github.com/richardclegg/xcpd

	Introduction
	The GEPON
	Design in detail
	Results
	Porting requirements
	Conclusions

