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Abstract—Several virtualization frameworks have been pro-

posed in the last few years for Software Defined Networks
(SDN); however, they are either based on proxy-based solutions
that raises scalability and robustness issues (FlowVisor), or they
leverage on a simplified view of the data-path (generally based
on Open vSwitch instances) that have little chances to be adopted
in production network settings.
In our demonstration we present preliminary results obtained by
deploying and using a novel OpenFlow-based network virtualiza-
tion mechanism. The mechanism is based on a recently proposed
distributed virtualization architecture [2] that is able to run on
multi-version OpenFlow scenarios.

Keywords—Network Virtualization, OpenFlow, FlowVisor, Soft-
ware Defined Network, Demonstration

I. INTRODUCTION

Considering the adoption of the SDN paradigm at all net-
work segment levels, the vision of a network infrastructure that
can be safely shared among several users is finally becoming
a reality. However, there is no common view on how an SDN
network should be virtualized and, in fact, many virtualization
frameworks based on SDN have been proposed recently, each
one of them with their own advantages and disadvantages.

Thanks to its wide adoption and success, OpenFlow [3]
is the protocol used in most of the SDN deployments and
in which SDN virtualization techniques has been focused on.
Leveraging on OpenFlow protocol, we may envision two major
approaches to introduce network virtualization in an SDN
network: (i) frameworks that leverage on an external proxy
to intercept OpenFlow control messages and assign them to
different controllers according to a specified “flowspace slic-
ing” (e.g. FlowVisor [4] and VeRTIGO [5]); (ii) frameworks
that assume the capability at switch level to instantiate several
instances of OpenFlow virtual switches and then assign them
to different controllers like [6], [7].

The former have been widely adopted thanks to their
simplicity and easy of use. However they have several lim-
itations: 1) the proxy controller constitutes a single point
of failure for the control plane; ii) there is non-negligible
latency overhead on the control channel due to the fact that
control messages have to be encapsulated/decapsulated twice
and transmitted/received via a socket; iii) their implementation
is strongly OpenFlow 1.0 centric. The latter have been recently
proposed to overcome these limitations, however almost all of
them have been proposing solutions based on Open vSwitch
(OvS) [8], a virtual software switch that is being heavily
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used in data-center “server-centric” scenarios but has little
applicability to carrier-grade switches.

In [2], a novel OpenFlow-based network virtualization

framework has been proposed that overthrows Flow Visor limi-
tations and leverages on a recent open-source datapath project
named eXtensible Datapath Daemon (xDPd) [9] available for
several hardware platforms. The proposed framework is based
on a robust distributed virtualization architecture that is able
to run on a multi-version OpenFlow switch network scenarios
via a minimal overhead, both from a performance and an
operational point of view.
In this companion paper, we describe a demo whose aim is
to show the benefits of the approach proposed in [2]. During
the demo we will (i) show the instantiation of several virtual
networks controlled by various version of the OpenFlow pro-
tocol; (ii) demonstrate the robustness of this new virtualization
mechanism to failures happening at node level.

II. ARCHITECTURE

In [2], the authors propose a distributed virtualization
mechanism designed with the following goals: (i) avoid Single
Point of Failures (SPoF) through a distributed slicing archi-
tecture, (ii) provide an OpenFlow version agnostic slicing
mechanism and (iii) minimize the latency overhead caused by
the slicing operations.

Distributed slicing. SPoFs are avoided through the implemen-
tation of the so-called Virtualization Agent (VA) which resides
on the OpenFlow-enabled switches. Being the slicing process
performed at the datapath level, no external proxies are used.
Therefore, no SPoFs are created.

Protocol agnostic. The VA does not inspect the control
protocol to perform the slicing process but, instead, it uses
version-agnostic structures containing flow matches or actions.
Latency overhead. Differently from FlowVisor, the VA nei-
ther inspects the OpenFlow protocol nor needs to establish
additional TLS connections with switches and controllers. As
demonstrated in the evaluation section of [2], this means lower
latency overhead on the control channel.

The Virtualization Agent operates at the datapath level and
is implemented as a plugin for xDPd (in Fig. 1, a concise
version of the architecture is sketched). In particular, xDPd
instantiates multiple Logical Switch Instances (LSIs, virtual
switches in the xDPd terminology) when different versions of
the OpenFlow protocol are used on the same physical switch.
Furthermore, multiple controllers using the same or different
versions of the protocol are handled by the VA through the so-
called OF endpoint encapsulated within each instantiated LSI.
The OF endpoint is the module in charge of providing the
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Fig. 1: The slicing mechanism is performed by the Virtualiza-
tion Agent (VA) which is implemented as a plugin for xDPd.

communication interface with the controller through a specific
version of the OpenFlow protocol.

III. DEMONSTRATION

The objective of the demonstration is to show how the
proposed network virtualization approach, grounded on xDPd
and the VA, allows: (i) multiple versions of the OpenFlow
protocol to be used at the same time to control the same
physical infrastructure, (ii) [Pv6 and IPv4 multicast streaming
experiments to be performed on different virtual networks
without interfering each other and (iii) virtual networks to
operate even in case of failure of one of the VA instances.

The demonstration setup, depicted as Physical Topology in
Fig. 2, is composed of four xDPd-based forwarding nodes,
each with the VA process enabled. Three commodity PCs
are used to both host the virtual machines where we can
generate the multimedia traffic and to run multiple OpenFlow
controllers.

The VA instances running on the four switches are con-

figured to slice the flowspace through the VLAN_ID field of
the packet headers. For the demo purposes, we setup three
virtual networks with three VLAN_ID values (let say 10, 20
and 30) and composed of three different subsets of the physical
topology (see Slice A, B and C layers in Fig. 2). Moreover,
the network interfaces of the virtual machines connected to the
virtual networks are configured to inject traffic tagged with the
correct VLAN_ID.
Finally, as also highlighted in Fig. 2, the multimedia traffic of
Slice A is controlled by using version v1.0 of the OpenFlow
protocol with FlowMods based on IPv4 addresses. Differently,
the IPv6 multimedia traffic of Slices B and C is controlled
through version 1.2 of the protocol that includes the support
for matching the IPv6 source and destination addresses.

During the experiment, we will also demonstrate that the
video streams flowing across two of the three slices are not
perturbed by a failure of the VA process on one of the nodes. In
fact, differently from other approaches with a central proxy like
FlowVisor, the virtualization operations are performed directly
on the nodes. Therefore, only the virtual networks including
the failing node can be affected by traffic disruption. However,
being the failure restricted to a single node, the controller can
easily apply the necessary countermeasures by redirecting the
traffic through an alternative path.
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Fig. 2: Pilot setup
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