Network Configuration in OpenFlow Networks

Adel Zaalouk and Kostas Pentikousis

EICT GmbH, Berlin, Germany
{adel.zaalouk,k.pentikousis}@eict.de

Abstract. Software-defined networking (SDN), and in particular net-
works based on an OpenFlow control plane, are expected to take sig-
nificant share in upcoming deployments. Network programmability has
emerged as a particularly desirable property for such new deployments,
in which logically centralized software will be able to both control and
manage operation. This paper focuses on one aspect of network man-
agement, namely configuration, in light of the ongoing work in the FP7
ALIEN project to augment a variety of devices with an OpenFlow con-
trol plane. In particular, we review management for programmable net-
works and present how software-defined control can be complemented
with software-defined configuration.

Key words: SDN, OpenFlow, Hardware Abstraction Layer, NETCONF

1 Introduction

Packet-switched computer networks are based on network elements that run dis-
tributed control software that is complex to configure. While network operators
ought to maintain a complete view of the actual network state, in practice, they
have only coarse-grained tools at their disposal. For instance, network device
configuration can often require human intervention based on Command Line
Interface (CLI) interaction. CLIs are cumbersome to use, error-prone, and may
vary widely across different vendors, so management complexity increases even
more. Network administration might lead to configuration errors, which are dif-
ficult to detect. But more in the interest of this work is that the current network
configuration paradigm is not really programmable.

The emergence of software-defined networking (SDN) [I] introduced new
opportunities in network research [2]. SDN advocates a logically centralized
control plane with advanced programming capabilities based on a control-data
plane separation. By breaking the tight coupling between the control and data
plane both can evolve independently. Programmability fosters the development
of software that can dynamically alter network-wide behavior, thus enabling
testing of research ideas in a speedier manner without having to always re-
sort to simulation tools. In particular, a programmable control plane based
on OpenFlow [3] is expected to accelerate network innovation and the roll-
out of new services. OpenFlow per se, however, is not well-suited for the man-
agement plane. To address this gap, the Open Networking Foundation (ONF;

2 Zaalouk and Pentikousis

www . opennetworking.org) introduced the OpenFlow Management and Con-
figuration Protocol (OF-CONFIG) [4], which uses the Network Configuration
Protocol (NETCONF) [5] as the transport protocol.

Originally OpenFlow was designed for Ethernet and ASIC network devices,
leaving behind a large set of other platforms such as wireless and point-to-
multipoint (DOCSIS, optical). To address this, the FP7 ALIEN project (www.
fp7-alien.eu) is working on the design and implementation of a Hardware
Abstraction Layer (HAL) which enables network devices that do not support the
OpenFlow protocol and switch model natively, to be included in the OpenFlow
control plane of a network deployment. In particular, ALTEN aims to enable
such devices (called “ALIEN devices” in the remainder of this paper) to be
controlled through OpenFlow thereby extending an OpenFlow control plane to
new classes of devices [6]. Within this framework, we are interested in the design
and implementation of a HAL for ALIEN devices that can be both controlled
and managed in a software-defined manner. As ALIEN devices will be introduced
in the OFELIA OpenFlow experimental facility [7], their management should
be programmatically enabled. In more general terms, this paper contributes to
the ongoing discussion about what does SDN entail [§], and in particular how
operators can employ software to both control and manage not only soon-to-be-
deployed OpenFlow compatible devices but legacy equipment as well.

We start our exploration with an overview of related work (§2) and con-
tinue with a discussion of the motivation behind and salient characteristics of
the programmable networks paradigm in light of the SDN emergence (We
consider recent work at the IRTF SDN RG and map accordingly the HAL de-
sign {4l Finally, we introduce network configuration based on NETCONTF for the
ALIEN HAL (and present workflows for software-defined configuration for
OpenFlow networks (We conclude this paper in §7| and outline future work
items.

2 Related Work

OpenFlow networks require management just like traditional networks. But,
given their edge in programmability, and the fact they would be controlled by
software, management should also follow along, thus enabling programmability
both in the control plane and the management plane. The ONF-standardized
OF-CONFIG protocol takes advantage of NETCONTF as a configuration protocol
and YANG [9] for OpenFlow switch data modeling.

Prior to its adoption by ONF, NETCONF was studied and compared against
other popular configuration management protocols. Hedstrom et al. [10] compare
the performance of NETCONF with SNMP in a testbed, considering protocol
bandwidth use, number of packets, number of transactions, operations time,
and so on. They conclude that NETCONF is much more efficient for configu-
ration management than SNMP (e.g., requires fewer transactions over managed
objects). Another empirical study [I1] compares NETCONF and SNMP indicat-
ing that NETCONF is more efficient in handling a large number of configura-

www.opennetworking.org
www.fp7-alien.eu
www.fp7-alien.eu

Network Configuration in OpenFlow Networks 3

tion transactions. With respect to implementation, there are several open-source
frameworks for developing NETCONF clients and servers [12, [I3]. Tran et al.
[14] introduce a plan for testing and verifying existing NETCONF implemen-
tations. Based on performance as well as other considerations, NETCONF was
chosen as reasonable candidate for configuring OpenFlow networks.

Several projects have sought to incorporate NETCONTF as a tool for network
configuration management in their networks. Munz et al. [I5] present an XML-
based data model for NETCONF to cover all common configurable parameters
for network monitoring. Xu et al. [16] introduce a NETCONF implementation
using a RESTful web service in the context of Internet of Things (IoT), while
applications of NETCONF in a military context were introduced in [I7].

None of this earlier work relates to SDN. According to [8], the SDN architec-
ture should decouple control and management functionalities. Although several
research projects focus on extending and enhancing network control using Open-
Flow, the research effort towards improving the SDN management plane remains
minimal to the best of our knowledge. For example, HybNET [I§] is an auto-
mated network management framework for “hybrid” networks (i.e., SDN and
legacy infrastructures). HybNET uses NETCONTF for the management of legacy
network switches. Sonkoly et al. [19], on the other hand, introduce an OpenFlow
virtualization framework which employs NETCONF for managing native Open-
Flow devices. Unlike HybNET which uses NETCONF to manage legacy switches,
or the OpenFlow virtualization framework that uses NETCONF to manage na-
tive OpenFlow devices, this paper proposes to integrate the management capa-
bility provided by NETCONF into non-native HAL-enabled OpenFlow devices
(. Although OF-CONFIG uses NETCONF for managing native OpenFlow
devices, we employ NETCONF to manage HAL-enhanced network devices. As
such, the contributions of this paper compared to earlier work include a thor-
ough study of NETCONF in the context of OpenFlow networks, the architectural
mapping of the ALIEN HAL design and the SDN Layers work currently under
adoption in the SDN RG (irtf.org/sdnrg), and the introduction of a proposal
for employing NETCONTF for software-defined configuration.

3 The Programmable Networks Paradigm

Arguably, the Internet has become extremely difficult to evolve both in terms
of its physical infrastructure and network protocols. As the Internet was only
designed for tasks such as sending and receiving data with best effort guarantees
only, there has been continuous interest to evolve the current IP packet-switched
networks to address the new challenges including Quality of Service (QoS), mul-
ticasting, and network security. One of the first steps towards making networks
more programmable was the introduction of Active Networking (AN) [20]. The
main idea behind AN was to enable network devices to perform custom compu-
tations on packets. To do so, two different models were introduced [I]. First, in
the “packet capsules model”, network programs were attached to (possibly each)
packet and sent across the network to target devices such as ANTS [21]. Second,

irtf.org/sdnrg

4 Zaalouk and Pentikousis

in the “programmable network devices model” [22], network devices were pre-
configured with several service-logic modules. When a packet arrives, its headers
are matched and sent to the appropriate module. Largely, the AN vision did not
come to pass,for various reasons [I]. On the one hand, a clear migration path was
not evident. On the other, no operator pressing need was basically addressed by
AN. That said, at the core, AN networks aimed for having programmability in
the data plane. This concept evolved over the years and took hold in network
devices that are known as middleboxes now. The concept of middlebox pro-
grammability has received quite some attention recently. For example, xOMP
[23], an eXtensible Open MiddleBox software architecture, allows for building
flexible, programmable, and incrementally scalable middleboxes based on com-
modity servers and operating systems. Similarly, SIMPLE [24], a programmable
policy enforcement layer for middlebox-specific traffic steering, allows network
operators to specify middlebox routing policies which take into account the phys-
ical topology, switch capacities and middlebox resource constraints.

Another important step that has been taken towards network programmabil-
ity is the separation of the control and data planes [I]. This decoupling enables
the two planes to evolve separately, and allows new paradigms where logically
centralized control can have a network-wide view making it easier to infer and
direct network behavior. Examples of such separation can be proposed earlier
in Routing Control Point (RCP) [25] and, of course, ForCES [26]. So far, the
OpenFlow approach towards control and data plane separation focused on con-
trol plane rather than data plane programmability as compared to AN. Despite
the intellectual contributions that resulted from such separation, the AN deploy-
ment strategy was not pragmatic (i.e., required deployment of new hardware),
as a result AN was not widely adopted. OpenFlow defines a standard interface
between the control and the data plane that goes hand in hand with the con-
cept of Network Operating Systems (NOS) [27] with the goal of providing an
abstraction layer between network state awareness and control logic.

Haleplidis et al. [8] provide a detailed description of the SDN layers architec-
ture, aiming to provide a clearer view of the emerging paradigm, which is often
cluttered with marketing terms. By dividing the SDN architecture into distinct
planes, abstraction layers and interfaces, the draft aims to clarify SDN terminol-
ogy and establish some commonly accepted ground across the SDN community.

As shown in Fig. [1} the Forwarding Plane represents parts of the network
device which are responsible for forwarding traffic. The Operational Plane in the
part of the network device which is responsible for managing device operation.
The Control Plane instructs the network devices, especially the forwarding plane
on how to forward traffic. The Management Plane is responsible for configuring
and maintaining one or more network devices. Most of the management plane
interactions happens with the forwarding plane. The draft also defines three
layers, as follows. The Device and Resource abstraction Layer (DAL) provides
a point of reference for the device’s forwarding and operational resources. The
Control Abstraction Layer (CAL) provides access to the control plane south-
bound interface. Finally the Management Abstraction Layer (MAL) provides

Network Configuration in OpenFlow Networks 5

Applications Services

Application Plane

v

., Network Service Abstraction Layer (SAL) ‘/"

| |

Control Plane ManagementPlane
Control Abstraction Management Abstraction
Layer (CAL) Layer (MAL)
T T

| 1
’/’ Network Device Abstraction Layer (DAL) R\.\

Network Device

ForwardingPlane Operational Plane

Fig. 1. High-level View of the SDN architecture

access to the management plane southbound interface. Fig. [1|illustrates all func-
tional components of the SDN architecture and provides a high-level overview
of the SDN architecture abstractions including control and management plane
abstractions. The architecture visibly decouples management, control and for-
warding functions including their interfaces. Of course, this is an abstract model.
In practice, the entities providing these functions/planes could be collocated. In
this paper, our focus lies on the management and control southbound interfaces,
as we explain next.

4 Abstraction Layer for ALTEN Devices

As mentioned earlier, the OpenFlow protocol was mainly designed to support
ASIC and campus Ethernet switches with little or no regard for other plat-forms
such as circuit-switched, wireless and optical. Unfortunately, these platforms are
often closed and changes cannot be made to the device per se in order to make
it natively compatible with an OpenFlow control plane. To overcome this chal-
lenge, the FP7 ALIEN project defines a Hardware Abstraction Layer (HAL)
[6] which aims to enable communication with devices that do not natively sup-
port OpenFlow through a set of hardware abstractions. These HAL-enhanced
devices will be controlled in the same manner as their native OpenFlow counter-
parts. Each hardware device that does not natively support OpenFlow will have
a Hardware Specific Layer (HSL) that translates OpenFlow protocol messages
coming from the controller to device-specific commands. In addition to having

6 Zaalouk and Pentikousis

Cross-Hardware Platform Layer

OpenFlow Virtualization

Translation Orchestration

[Network Device(s)]

Fig. 2. HAL Architecture

the ALIEN devices controlled via OpenFlow, HAL provides configuration man-
agement functionalities through protocols such as NETCONF as we discuss later
in this paper (§5).

Fig. [2] illustrates the HAL architecture [6]. Network Control represents con-
trolling elements such as the OpenFlow controllers. Network Management allows
network administrators to configure the underlying ALIEN devices with parame-
ters such as controller’s IP address. The Cross-Hardware Platform Layer contains
hardware-agnostic components such as the OpenFlow-endpoint that mediates
the communication between the ALIEN devices and the OpenFlow controllers,
and the virtualization agent which enables the device to be controlled by mul-
tiple controllers. The HSL contains hardware specific sub-components to enable
translation of OpenFlow messages to device specific messages [7], or to discover
the underlying hardware device components and relay incoming messages to
each of these components (i.e., Orchestration). Finally, the network devices con-
stitute the data plane in an ALIEN network deployment. Finally, the Abstract
Forwarding API (AFA) is the interface used for relaying, management and con-
trol messages from the Cross-Hardware Platform Layer to the HSL. Due to space
restrictions we cannot delve into details here; interested readers are referred to
7, 6].

We map the ALIEN HAL to the SDN layers in Fig. [3] Essentially, DAL
in the SDN architecture is realized by the HAL in ALIEN, which handles the
translation of OpenFlow messages to device-specific messages. Generic network
devices are mapped to ALIEN devices, which do not support OpenFlow natively.
The control plane is realized by OpenFlow controllers, and the management
plane is implemented using NETCONF. The application plane is mostly outside
the scope of the ALIEN architecture.

Network Configuration in OpenFlow Networks 7

fpeens “

Application Plane

frpeen
A3

Application Plane

* r El
4 »

Y service Interface Service Interface 1

“ @ Control Plane Mangement Plane

Control Plane Management Plane

Network Service Abstraction Layer (NSAL) "4 Network Service AbstractionLayer (NSAL)

Control Abstraction
Layer (CAL)

Management Abstracticn
Layer (MAL)

OpenFlow
"e—
| Centrolinterface Management Interface |

I T
1 CentrolInterface ManagementInterface N

‘/' Network Device Abstraction Layer (DAL) “»‘ HAL

Network Devices

ALIEN Devices

_

Fig. 3. Mapping of HAL to the SDN Layers Architecture

5 HAL Network Configuration

Using OpenFlow the control plane can communicate with the data plane to per-
form several functionalities such as adding or removing flow-rules and collecting
per-flow, per-table statistics. However, this assumes that the OpenFlow switches
are already configured with various parameters such as the IP address(es) of the
controller(s). Here it is important to distinguish time-sensitive control functional-
ities for which OpenFlow was designed (e.g., modifying forwarding tables, match-
ing flows) from non-time-sensitive management and configuration management
functionalities which are essential for the operation of the OpenFlow-enabled
device (e.g., controller TP assignment, changing switch port administrative sta-
tus, configuring datapath-ids, etc.) SNMP could be used for such configuration
tasks.

However, as per [9], SNMP has several drawbacks, including unreliable trans-
port of management data (e.g., UDP); no clear separation between operational
and configuration data; no support for roll-backs in case of errors / disaster;
lack of support for concurrency in configuration (i.e., N:1 device configuration);
and no distinction between transaction models (e.g., running, startup, and can-
didate). To address such shortcomings, the NETCONF protocol was developed.
NETCONF provides several key features such as the ability to retrieve config-
uration as well as operational data, rich configuration management semantics
including validation, rollbacks and transactions, and configuration extensibility
based on the capabilities exchange that occurs during initiating the session ini-
tiation. Furthermore, NETCONF’s transactional models constitutes candidate,
running and startup data-stores.

The NETCONF protocol stack can be divided into four layers:

— Content: represents data such as configuration and operational data

8 Zaalouk and Pentikousis

— Operations: the operations that are to be supported by NETCONF (e.g.,
get-config, edit-config, delete-config, discard-changes, etc.)

— Messages: wraps the content and operations into RPC messages

— Transport: defines the protocol for delivering NETCONF messages

The NETCONF protocol provides general guidelines for configuration and
management of “any” underlying network device. OF-CONFIG customizes the
use of NETCONF to OpenFlow switches. In simple terms, the difference be-
tween NETCONF and OF-CONFIG, is that the latter defines XML-models for
OpenFlow-specific instances rather than general underlying devices. For exam-
ple, OF-CONFIG defines the OpenFlow Capable Switch (OCS) which can have
one or more OpenFlow Logical Switches (OFLS). i.e., an entity that manages a
subset of resources in the OCS. Listing [I] presents an XML model which defines
the configuration of a OFLS with the size of the Virtual Local Area Networks
(VLAN) table. In the remainder of this paper we explain high-level NETCONF
commands only, without delving into the OpenFlow-specific message details (i.e.,
OF-CONFIG).

1 <capable—switch xmlns="urn:onf:oflll:config:yang”
2 xmlns:ndm="urn:opennetworking.org:yang:ndm?”

3 xmlns:1213="urn:opennetworking.org:yang:ndm:12137>
4 <logical —switches>

5 <switch>

6 <id>LogicalSwitchb</id>

7 <resources>

8 <ndm:ndm—implementation>

9 <1213:1213>

10 <vlan—table—size>128<vlan—table—size>
11 </1213:1213>

12 </ndm:ndm—implementation>

13 </resources>

14 </switch>

15 </logical —switches>
16 <id>capable—switch—0</id>

Listing 1. XML-Model for configuring logical switches

As described in Section [d] the HAL architecture comprises two layers, one of
which is hardware-specific (i.e., HSL) while the other is hardware-agnostic (i.e.,
CHPL). All management and control specific modules (e.g., OpenFlow-endpoint
and NETCONF server) should reside in the CHPL. Furthermore, the network
management block incorporates the NETCONF client. Furthermore, NETCONF
can be abstracted for networks administrators by providing a customized user
interface for managing the underlying devices. The integration of the NETCONF
server / client is shown in Figure The Figure illustrates that the ALIEN
management plane includes also a virtualization gateway (VGW) as discussed
in [6].

An example of the commands that can be provided to the administrators as
an extra layer of abstraction is shown in Listing

Network Configuration in OpenFlow Networks 9

OpenFlow | NETCONF Client

Cross-Hardware Platform Layer

OpenFIf)w Virtualization REICONE
end-point Server

| Translation Orchestration

[Network Device(s)]

Fig. 4. NETCONF Implementation and HAL Integration

user@network—management—pc:~$ list —capabilities <ofcs_id >
user@network—management—pc:~$ list —ports <ofcs_id>
user@network—management—pc:~$ disable —port <ofcs_id , port_no>
user@network—management—pc:~$ list —logical_datapaths <ofcs_id >

W N =

Listing 2. Illustrative example for configuring logical switches

6 Software-defined Configuration

We now proceed to illustrate three software-defined configuration workflows for
OpenFlow networks based on a simple but representative topology. The work-
flows showcase the combined use of OpenFlow in the control plane with NET-
CONF in the management plane. We consider interactions with devices such as
middleboxes, ALIEN switches, and native OpenFlow switches. All three work-
flows share the same network tolopogy, illustrated in Fig. [5} The topolgy maps
elements in the network into four planes: management plane, control plane, for-
warding plane, and applications plane as described in Section

The topology in Fig. 5] is composed of the following entities, OF Switches
these are OpenFlow-enabled switches, some of which are equipped with sFlow
[28] agents for collecting monitoring information, ALIEN Devices which can be
controlled via OpenFlow through HAL., Software-configured Middleboxes with
configurable functions i.e., can act as firewalls, Intrusion Detection Systems
(IDS) and so on, based on their real-time configuration, OF Controllers to con-
trol entities for our OpenFlow-based networks, sFlow Collectors for collecting the
monitoring information sent by the sFlow agents running in the OF switches for
further analysis, NETCONF Clients which are devices that run the NETCONF

10 Zaalouk and Pentikousis

Control

Applications &
Services

—————— Monitoring

——————— Management

sFlow Collector
OpenFlow Ceatrollers NETCGNF Clients

I

E

[5=
L]

OF Device ALIEN Device Software-Configured
Middlebox

Fig. 5. Software Defined Configuration Topology

client, Application €& Services represented as the logical entities that make use
of the underlying management and control planes as per [g].

First consider the case where an network application employs NETCONF to
configure the sFlow agents monitoring parameters such as sampling rate, sFlow
collector IP, etc. This workflow is shown in Fig. [f] First, the application specifies
the configuration parameters and sends it to the NETCONF client. In turn, the
NETCONF client will form an edit-config message with the specified parameters
and will send it to the NETCONF server running on the target OF switch(es).
Once the NETCONTF server receives the message, it will update the switch con-
figuration and will send a reply back to the NETCONF client regarding the
success or failure of the operation. Subsequently, upon the instruction on the
application, the OF controller will interact with the underlying switches using
OpenFlow to control the flow of traffic.

Another scenario for software-defined configuration using NETCONF is ap-
plying security through real-time middleboxes configuration. Usually the func-
tions embedded in middleboxes are fixed or static. In this example we examine
how NETCONF can be used to configure the middleboxes to run security mod-
ules based on the traffic monitored in the network. For example, if a Denial of
Service (DoS) attack is suspected, then NETCONF client informs the middlebox
to run the DoS detection module. For simplicity, the steps related to monitoring
the network for suspicious behavior are omitted in this workflow (more details
about these steps can be found in [29]). In the workflow shown in Fig. [7] the
application is already aware of a DoS attack likelihood (with the help of network
monitoring). Accordingly, the NETCONF client is instructed to configure the
middleboxes to run the DoS detection modules. Consequently, the NETCONF
client will form an edit-config message with the specified parameters and send

Network Configuration in OpenFlow Networks 11

Management / Control Application NETCONF Client sFlow | NETCONF enabled OF switch OF Controller

1-configure_cellecter_ip »

2-configure_collector p-::rt>

Jconfigure_sampling_rate

4-configure_poll_interval ;

edit-config<1,2,3.4>)_

Success
<

run_simple_leaming_switch >

packet in

flow_mod
<

Management / Control Application NETCONF Client sFlow | NETCONF enabled OF switch OF Controller

Fig. 6. Monitoring configuration workflow

Man I Control A N ETC ONF Client NETCONF- OF C OF Device

1-Run DDoS Detection Module -
>

2-Run DNS Ampification Detection Module ~
>

edil-confige1,2> 3

(Success
Forward Traffic To -
-
ﬂmn'_mod,
- traffic
<
Analyze Traffic 2
Man I Control A N ETCONF Client NETCONF-enabled Middlebox OF Controller OF Device

Fig. 7. Software-configured middlebox workflow

it to the NETCONF server running on the middlebox. Once the NETCONF
server receives the message, it will update the device configuration, switch on
the corresponding security modules, and send a reply back to the client to in-
form it about the success or failure of the operation. In addition to configuring
the middlebox using NETCONF, the network switches are instructed by the
OpenFlow controller to redirect suspicious traffic to the middleboxes for further
inspection, thus utilizing the combined functionalities of network configuration
and control. The middlebox functions can be provided through a physical device
or using a Network Function Virtualization (NFV) approach where functions are
provided as a service. Furthermore, NETCONF could be used to configure and
attach virtual function and services together to provide a fully fledged network
function through the assembly of smaller sub-functions.

Finally, the NETCONF implementation in HAL (is used to configure
the underlying ALIEN device. For example, it might be desirable to switch off
a faulty interface on an ALIEN switch; alternatively, the network admin might
want to list all the available interfaces on the ALIEN switch. The workflow for
this scenario is shown in Fig. |8 First, the NETCONF client is instructed by
the application to list all the available switch ports. Consequently, an edit-config
message is formed and sent to the NETCONF server embedded in the HAL ar-

12 Zaalouk and Pentikousis

Application NETCONF Client ALIEN Device OF Controller

1-list-switch-ports ;
edit-config<i> ’
< Success
2-disable-port ’
editconfig<2> ’
‘ Success
run_simple_learmning_switch ,
Packet In ,
(Flow-mod

Application NETCONF Client ALIEN Device OF Controller

Fig. 8. Configuration of HAL-enhanced Devices Workflow

chitecture of the ALIEN switch. In turn, the NETCONF server will apply the
command and send the reply back to the client. Furthermore, the NETCONF
client will follow the same steps when instructed to disable a switch port. In
addition to configuring the underlying ALIEN devices using NETCONF, Open-
Flow will be used to control the forwarding behavior for the ALIEN devices by
installing the appropriate flow rules according to the logic running on-top of
the controller. In addition to using OpenFlow for network control, NETCONF
automates configuration management functions and thus making network man-
agement tasks much simpler.

7 Conclusion and Future Work

OpenFlow networks are expected to proliferate in the coming years. Although
up to now SDN R&D has placed more emphasis on control and data plane de-
velopment, we expect that operations and management (OAM) aspects deserve
more attention. In this paper we focused on network configuration in OpenFlow
networks, and in particular on how software-defined configuration can enhance
SDN deployments. After reviewing OF-CONFIG and NETCONF in an Open-
Flow network context we discussed the evolution of the programmable networks
paradigm and drew parallels between the configurable middleboxes line of work
and OpenFlow-based SDN. Given the original focus of OpenFlow switches on
campus and data center environments, the FP7 ALIEN projects aims to extend
devices which do not natively support OpenFlow and introduce them to SDN
experimental facilities such as OFELIA in Europe. For this type of devices, con-
figuration is necessary and as we have seen NETCONTF can serve as the basis for
further development in this domain. In this respect, we overviewed the ALTEN
Hardware Abstraction Layer (HAL) and mapped it to recent work in the IRTF
SDN RG. This paper also introduced a range of workflows which illustrate how
software-defined configuration can work in practice, enabling network applica-
tions and services to dynamically configure and control a virtual infrastructure
which includes native OpenFlow switches, ALIEN devices and configurable mid-

Network Configuration in OpenFlow Networks 13

dleboxes. Namely, we discussed software-defined configuration of sFlow moni-
toring agents in OF switches, ALIEN device configuration and security-related
middlebox configuration. We are currently working on the NETCONF imple-
mentation in the ALTEN HAL and aim to release the code during summer 2014.
This implementation will be part of the ALIEN demos and will be introduced
in the OFELIA experimental facility once it is mature for production. Until
then, we plan to have several experiments performed, illustrating the feasibility
and potential of our approach while measuring its performance on an OpenFlow
testbed. Furthermore, we consider mapping the architecture defined in this pa-
per to a virtual environment , where network functions are defined as a server
and where NETCONF could be used to configure the necessary parameters for
these virtual network functions.

Acknowledgment

This work was conducted within the framework of the FP7 ALIEN project,
which is partially funded by the Commission of the European Union.

References

1. N. Feamster, J. Rexford, and E. Zegura. The Road to SDN. Queue, 11(12):20:20—
20:40, December 2013.

2. W. John, K. Pentikousis, et al. Research directions in network service chaining. In
Future Networks and Services, 2013 IEEE SDN for, pages 1-7, Nov 2013.

3. N. McKeown, T. Anderson, et al. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review, 38(2):69-74, 2008.

4. ONF. OF-CONFIG 1.2. OpenFlow Management and Configuration Protocol ver-
sion 1.2, 2014.

5. R. Enns, M. Bjorklund, and J. Schoenwaelder. NETCONF configuration protocol.
IEEE Network, 2011.

6. D. Parniewicz, R. Doriguzzi Corin, et al. Design and implementation of an openflow
hardware abstraction layer. In SIGCOMM DCC 2014, pages 1-6, 2014.

7. L. Ogrodowczyk, B. Belter, et al. Hardware abstraction layer for non-OpenFlow
capable devices. In TERENA Networking Conference, pages 1-15, 2014.

8. E. Haleplidis, S. Denazis, et al. SDN layers and architecture terminology. Internet
Draft: draft-haleplidis-sdnrg-layer-terminology (work in progress), 2014.

9. J. Schénwélder, M. Bjorklund, and P. Shafer. Network configuration management
using NETCONF and YANG. IEEE Communications Magazine, 48(9):166-173,
2010.

10. B. Hedstrom, A. Watwe, and S. Sakthidharan. Protocol Efficiencies of NETCONF
versus SNMP for Configuration Management Functions. page 13, 2011.

11. J. Yu and I. Al Ajarmeh. An empirical study of the NETCONF protocol. In
Networking and Services (ICNS), 2010 Sizth International Conference on, pages
253-258. IEEE, 2010.

12. Sh. Bhushan, H. M. Tran, and J. Schénwélder. NCClient: A python library for
NETCONTF client applications. In IP Operations and Management, pages 143—154.
Springer, 2009.

14

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Zaalouk and Pentikousis

R. Krejci. Building NETCONF-enabled network management systems with lib-
netconf. In Integrated Network Management (IM 2013), 2018 IFIP/IEEE Inter-
national Symposium on, pages 756—759. IEEE, 2013.

H. M. Tran, I. Tumar, and J. Schonwélder. NETCONF interoperability testing.
In Scalability of Networks and Services, pages 83-94. Springer, 2009.

G. Munz, A. Antony, et al. Using NETCONF for configuring monitoring probes.
In Network Operations and Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pages 1-4. IEEE, 2006.

H. Xu, C. Wang, et al. NETCONF-based integrated management for internet of
things using RESTful web services. International Journal of Future Generation
Communication & Networking, 5(3), 2012.

Zhu W., Liu N., et al. Design of the next generation military network management
system based on NETCONF. In Information Technology: New Generations, 2008.
ITNG 2008. Fifth International Conference on, pages 1216-1219, April 2008.

H. Lu, N. Arora, et al. Hybnet: network manager for a hybrid network infras-
tructure. In Proceedings of the Industrial Track of the 18th ACM/IFIP/USENIX
International Middleware Conference, page 6. ACM, 2013.

B. Sonkoly, A. Gulyés, et al. Openflow virtualization framework with advanced
capabilities. In Software Defined Networking (EWSDN), 2012 European Workshop
on, pages 18-23. IEEE, 2012.

J. M. Smith and S. M. Nettles. Active networking: one view of the past, present,
and future. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 34(1):4-18, 2004.

D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. Ants: A toolkit for building
and dynamically deploying network protocols. In Open Architectures and Network
Programming, 1998 IEEFE, pages 117-129. IEEE, 1998.

B. Samrat, Kenneth L. Calvert, and Ellen W. Zegura. An Architecture for Active
Networking. In IEEE Communications Magazine, pages 72—78, 1997.

J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. xOMB: Exten-
sible Open Middleboxes with Commodity Servers. In Proceedings of the Eighth
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS 12, pages 49-60, New York, NY, USA, 2012. ACM.

Z. Ayyub Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-fying
middlebox policy enforcement using sdn. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM °’13, pages 27-38, New York, NY,
USA, 2013. ACM.

N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der Merwe. The
Case for Separating Routing from Routers. In Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, FDNA ’04, pages 5-12,
New York, NY, USA, 2004. ACM.

L. Yang, R. Dantu, et al. Forwarding and control element separation (ForCES)
framework, 2004.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker.
Nox: Towards an operating system for networks. SIGCOMM Comput. Commun.
Rev., 38(3):105-110, July 2008.

M. Wang, B. Li, and Z. Li. sflow: towards resource-efficient and agile service
federation in service overlay networks. In Distributed Computing Systems, 200.
Proceedings. 24th International Conference on, pages 628-635, 2004.

A. Zaalouk, R. Khondoker, et al. OrchSec: An Orchestrator-Based Architecture
For Enhancing Network-Security Using Network Monitoring And SDN Control
Functions. In IEEE SDNMO, Krakow, Poland, pages 1-8, 2014.

	Network Configuration in OpenFlow Networks
	Zaalouk and Pentikousis
	Introduction
	Related Work
	The Programmable Networks Paradigm
	Abstraction Layer for ALIEN Devices
	HAL Network Configuration
	Software-defined Configuration
	Conclusion and Future Work
	References

